Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T09:53:04.877Z Has data issue: false hasContentIssue false

Atomic Structure of Defects in GaN:Mg grown with Ga polarity

Published online by Cambridge University Press:  01 February 2011

Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
T. Tomaszewicz
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
D. Zakharov
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
J. Jasinski
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
M. A. O'Keefe
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720 m/s 62/203
S. Hautakangas
Affiliation:
Helsinki University of Technology. Espoo, Finland
A. Laakso
Affiliation:
Helsinki University of Technology. Espoo, Finland
K. Saarinen
Affiliation:
Helsinki University of Technology. Espoo, Finland
Get access

Abstract

Electron microscope phase images, produced by direct reconstruction of the scattered electron wave from a focal series of high-resolution images, were used to determine the nature of defects formed in GaN:Mg crystals. We studied bulk crystals grown from dilute solutions of atomic nitrogen in liquid gallium at high pressure and thin films grown by the MOCVD method. All the crystals were grown with Ga-polarity. In both types of samples the majority of defects were three dimensional Mg-rich hexagonal pyramids with bases on the (0001) plane and six walls on {1123} planes seen in cross-section as triangulars. Some other defects appear in cross-section as trapezoidal (rectangular) defects as a result of presence of truncated pyramids. Both type of defects have hollow centers. They are decorated by Mg on all six side walls and a base. The GaN which grows inside on the defect walls shows polarity inversion. It is shown that change of polarity starts from the defect tip and propagates to the base, and that the stacking sequence changes from ab in the matrix to bc inside the defect. Exchange of the Ga sublattice with the N sublattice within the defect leads to 0.6±0.2Å displacement between Ga sublattices outside and inside the defects. It is proposed that lateral overgrowth of the cavities formed within the defect takes place to restore matrix polarity on the defect base.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaufman, U., Schlotter, P., Obloch, H., Kohler, K., Maier, M., Phys. Rev. B62, 10867 (2002).Google Scholar
2. Nakamura, S. and Fasol, G., “The blue laser diode” (Springer-Verlag, Berlin (1997).Google Scholar
3. Liliental-Weber, Z., Benamara, M., Washburn, J., et al, Phys. Rev. Letter. 82, 2370 (1999).Google Scholar
4. Liliental-Weber, Z., Benamara, M., Swider, W., Washburn, J., Grzegory, I., Porowski, S., Dupuis, R.D., and Eiting, C.J., Physica B 273–274, 124 (1999).Google Scholar
5. Liliental-Weber, Z., Benamara, M., Washburn, J., Grzegory, I., Porowski, S., Lambert, D.J.H., Eiting, C.J., and Dupuis, R.D., Appl. Phys. Lett. 75, 4159 (1999).Google Scholar
6. Liliental-Weber, Z., Jasinski, J., Benamara, M., Grzegory, I., Porowski, S., Lambert, D.J.H., Eiting, C.J., and Dupuis, R.D., Phys. Stat. Sol. (b) 228, No. 2, 345 (2001).Google Scholar
7. Vennegues, P., Benaissa, M., Dalmaso, S., Leroux, M., Feltin, E., De Mierry, P., Beaumont, B., Damilano, B., Grandjean, N., and Gibbar, P., Mat. Science and Engin. B93, 224 (2002).Google Scholar
8. Kroger, R., Figge, S., Bottcher, T., Ryder, P.L., and Hommel, D., Mat. Res. Symp. Proc. 693, 615 (2002).Google Scholar
9. Cowley, J.M. and Iijima, S., Z. Naturforsch., 27a, 445 (1972).Google Scholar
10. O'Keefe, M.A., Ultramicroscopy 47, 282 (1992).Google Scholar
11. Thust, A., Coene, W.M.J., Op De Beeck, M., and Van Dyck, D., Ultramicroscopy 64, 211 (1996).Google Scholar
12. Van Dyck, D. and Op De Beeck, M., Ultramicroscopy 64, 99 (1996).Google Scholar
13. Sinkler, W. and Marks, L. D. Ultramicroscopy 75, 251 (1999).Google Scholar
14. O'Keefe, M.A. and Kilaas, R., Scanning Microscopy suppl. 2, 225 (1988 Google Scholar
15. Porowski, S., Bockowski, M., Lucznik, B., et al, Acta Phys. Pol. A92, 958 (1997).Google Scholar
16. Eiting, C.J., Grudkowski, P.A., Park, J.S., et al J. Electr. Soc. 144, L219 (1997).Google Scholar
17. Bour, D.P., Chung, H.F., Gotz, W., Romano, L. et al, Mater. Res. Soc. Symp. 449, 509 (1997).Google Scholar
18. Hautaakangas, S., Oila, J., Alatalo, M., Saarinen, K., Liszkay, L., Seghier, D., and Gislason, H.P., Phys. Rev. Lett. 90, No. 13, 137402, (2003).Google Scholar
19. Northrup, J.E., Appl. Phys. Lett. 82, 2278 (2003).Google Scholar
20. Romano, L.T., Northrup, J.E., Ptak, A.J., and Myears, T.H., Appl. Phys. Lett. 77, 2479 (2000).Google Scholar
21. Leroux, M., Vennegues, P., Dalmasso, S., Benaissa, M., et al. Phys. Stat. Sol. 192, 394 (2002).Google Scholar