Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T18:18:30.820Z Has data issue: false hasContentIssue false

Barrier Integrity Effect on Leakage Mechanism and Dielectric Reliability of Copper/OSG Interconnects

Published online by Cambridge University Press:  01 February 2011

Yunlong Li
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium Department of Electrical Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Zsolt Tökei
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Tushar Mandrekar
Affiliation:
Copper PVD Integration Systems and Modules, Applied Materials, CA 95054, USA
Bencherki Mebarki
Affiliation:
Maydan Technology Center Group, Applied Materials, Santa Clara, CA, USA
Guido Groeseneken
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium Department of Electrical Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Karen Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium Department of Electrical Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Get access

Abstract

In this paper, we investigate the effect of copper diffusion barrier integrity on the leakage behavior and dielectric reliability of copper/micro porous organo-silica-glass (OSG) interconnects. Significant differences in the field dependence of TDDB median-time-to-failure are observed when comparing sub-critical and sealing barriers. Also for the temperature acceleration of TDDB, a significant difference is found which is reflected in the thermal activation energies. With fast voltage ramp measurements, I-V curves of samples with subcritical and sealing barriers are compared before and after constant current stresses. Above 1.4 MV/cm, the dominant leakage mechanism is found to be Frenkel-Poole emission regardless of barrier treatments and stress times. Below 1.4 MV/cm, however, the I-V characteristic is modulated by the barrier integrity, which can be attributed to copper diffusion into the intermetal dielectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsu, R.et al, Proc. IRPS 2000, pp.348353, San Jose, CA, 2000 Google Scholar
2. Lloyd, J. R., Lane, M. R., Liu, X.H., Liniger, E., Shaw, T. M., Hu, C.K., Rosenberg, R., Microel. Reliability, pp.18351841, 44 (2004)Google Scholar
3. Tökei, Zs., Gailledrat, T., Li, Y.-L., Schuhmacher, J., Mandrekar, T., Guggilla, S., Mebarki, B., Maex, K., AMC 2004, San Diego, CA, October 19-21, 2004 Google Scholar
4. Li, Y.-L., Tökei, Zs., Maex, K., Microel. Eng., pp. 2024, 76 (2004)Google Scholar
5. Tökei, ZS, Patz, M., Schmidt, M., Iacopi, F., Demuynck, S., Maex, K., Microel. Eng., pp.7075, 76 (2004)Google Scholar
6. Tökei, Zs.et al, Proc. IRPS 2004, pp. 326332, Phoenix, AZ, 2004 Google Scholar
7. Noguchi, J., Ohashi, N., Jimbo, T., Yamaguchi, H. Takeda, K., Hinode, K., IEEE Tran Elect. Dev., Vol. 48, No. 7, pp. 13401345, July 2001 Google Scholar
8. Noguchi, J.et al, Proc. IRPS 2003, pp. 287292, Dallas, TA, 2003 Google Scholar
9. Sze, S. M., in Physics of Semiconductor Devices, p. 402, Wiley, New York (1981)Google Scholar
10. Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J. L., Depas, M., Roussel, P. J., Maex, H.E., IEEE Tran Elect. Dev., pp. 904911, (1998)Google Scholar