Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T13:39:58.406Z Has data issue: false hasContentIssue false

Binary and Ternary Mercury Chalcogenide Quantum Dots and Clusters

Published online by Cambridge University Press:  11 February 2011

Masaru Kuno*
Affiliation:
Naval Research Laboratory, Optical Sciences Division, 4555 Overlook Ave. SW Washington D.C. 20375
Keith A. Higginson
Affiliation:
Current address: Triton Systems Inc. Chelmsford, MA.
Syed B. Qadri
Affiliation:
Naval Research Laboratory, Materials Science Division, 4555 Overlook Ave. SW Washington D.C. 20375
Mohammad Yousuf
Affiliation:
Naval Research Laboratory, Materials Science Division, 4555 Overlook Ave. SW Washington D.C. 20375
Benjamin L. Davis
Affiliation:
Naval Research Laboratory, Electronic Science and Technology Division, 4555 Overlook Ave. SW Washington D.C. 20375
Hedi Mattoussi
Affiliation:
Naval Research Laboratory, Optical Sciences Division, 4555 Overlook Ave. SW Washington D.C. 20375
Get access

Abstract

This paper describes the synthesis, characterization and optical properties of binary and ternary mercury chalcogenide quantum dots and clusters. Such materials were made by applying a synthetic strategy involving the simultaneous use of strong Hg(II) coordinating ligands and the explicit phase separation of both metal and chalcogen precursors. High quality QDs and clusters are obtained in this manner with sharply structured absorption and band edge emission covering the visible to near infrared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kershaw, S. V., Harrison, M., Rogach, A. L., Kornowski, A., IEEE J. Selected Topics Quantum Elec. 6, 534 (2000).Google Scholar
Higginson, K. A., Kuno, M., Bonevich, J. E., Qadri, S. B., Yousuf, M., and Mattoussi, H., J. Phys. Chem. B 106, 9982 (2002).Google Scholar
Kuno, M., Higginson, K. A., Bonevich, J. E., Qadri, S. B., Yousuf, M., and Mattoussi, H., (in press, SPIE proceedings).Google Scholar
(c) Kuno, M., Higginson, K. A., Qadri, S. B., Yousuf, M., Lee, S. H., Davis, B. L. and Mattoussi, H., (in preparation).Google Scholar
3. (a) Qu, L., Peng, A., and Peng, X., Nano Lett. 1, 333 (2001).Google Scholar
(b) Murray, C. B. et. al. IBM J. Res. & Dev. 45, 47 (2001).Google Scholar
4. Pileni, M. P., In “Structure and Reactivity in Reverse Micelles”, Pileni, M. P. Ed. Elsevier, Amsterdam, 1989.Google Scholar
5. Martell, A. E. and Smith, R. M., Eds. “Critical Stability Constants”, Plenum Press, New York 1974.Google Scholar
6. Tedenae, J. C. et. al. Thermochimica Acta, 245, 207 (1994).Google Scholar
7. Kuno, M., Lee, J. K., Dabbousi, B. O., Mikulec, F. V. and Bawendi, M. G., J. Chem. Phys. 106, 9869 (1997).Google Scholar
8. (a) Soliov, V. N., Eichhofer, A., Fenske, D., and Banin, U., J. Am. Chem. Soc. 123, 2354 (2001).Google Scholar
(b) Soloviev, V. N., Eichhofer, A., Fenske, D., and Banin, U., Phys. Stat. Sol. 224, 285 (2001).Google Scholar