Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T18:45:19.843Z Has data issue: false hasContentIssue false

Biocompatibility and bio-corrosion resistance of amorphous oxide thin films

Published online by Cambridge University Press:  31 January 2011

P. N. Rojas
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, México D.F. 04510, México
S. E. Rodil
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, México D.F. 04510, México
S. Muhl
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, México D.F. 04510, México
G. Ramírez G.
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, México D.F. 04510, México
H Arzate
Affiliation:
Laboratorio de Biología Celular y Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, CU, México D.F. 04510, México
Get access

Abstract

The corrosion resistance of biocompatible materials in body fluids is one of the essential factors in the determination of the lifetime of medical implants. Therefore, it is of great relevance to understand the interface processes that occur when a surface is exposed to body fluids. To this end, amorphous titanium and niobium oxide films were deposited on medical grade stainless steel using a magnetron sputtering system. The biocompatibility of the films was evaluated by adhesion and viability/proliferation assays using human cells, showing non-toxic response. The electrochemical response of the films was evaluated by poteontiodynamic polarization and electrochemical impedance spectroscopy (EIS) as a function of time, up to 500 hrs, using three different simulated body fluids; the NaCl solution and Hartman (Ringer's + Lactate) and Gey's (Ringer's + Phosphates + Glucose) solution. The results indicated that the chemical composition of the solution was very important since different electrochemical behavior was observed for each case. For example, NbOx showed a better resistance than the TiOx films in the Hartman's solution but it failed when Gey's solution was used. Meanwhile TiOx showed a well passivated response for both NaCl and Gey's solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singh, R. and Dahotre, N. B., J Mater Sci Mater Med 18 (5), 725751 (2007).Google Scholar
2. Okazaki, Y., Gotoh, E., Nishimori, M., Katsuda, S., Manabe, T. and Kobayashi, K., Mater Trans 46 (7), 16101617 (2005).Google Scholar
3. Zhu, L., Ye, X., Tang, G., Zhao, N., Gong, Y., Zhao, Y., Zhao, J. and Zhang, X., Journal of Biomedical Materials Research Part A 83A (4), 11651175 (2007).Google Scholar
4. Roy, R. K. and Lee, K. R., Journal of Biomedical Materials Research Part B-Applied Biomaterials 83B (1), 7284 (2007).Google Scholar
5. Xu, J. L., Khor, K. A., Lu, Y. W., Chen, W. N. and Kumar, R., J Biomed Mater Res B Appl Biomater 84 (1), 224230 (2008).Google Scholar
6. Soumetz, F. C., Pastorino, L. and Ruggiero, C., J Biomed Mater Res B Appl Biomater 84 (1), 249255 (2008).Google Scholar
7. Rodil, S. E., Olivares, R., Arzate, H. and Muhl Carbon, S.: The Future Material for Advanced Technology Applications 100, 5575 (2006).Google Scholar
8. Kasemo, B., J Prosthet Dent 49 (6), 832837 (1983).Google Scholar
9. Navarro, M., Michiardi, A., Castano, O. and Planell, J. A., Journal of the Royal Society Interface 5 (27), 11371158 (2008).Google Scholar
10. Virtanen, S., Corrosion Reviews 26 (2–3), 147171 (2008).Google Scholar
11. Zielinski, A. and Sobieszczyk, S., Corrosion Reviews 26 (1), 122 (2008).Google Scholar
12. Yoruc, A. B. H., Gulay, O. and Sener, B. C., Journal of Optoelectronics and Advanced Materials 9 (8), 26272633 (2007).Google Scholar
13. Shih, C. C., Shih, C. M., Chows, K. Y., Lin, S. J. and Su, Y. Y., Journal of Biomedical Materials Research Part A 80A (4), 861873 (2007).Google Scholar
14. Hiromoto, S. and Hanawa, T., Corrosion Reviews 24 (5–6), 323351 (2006).Google Scholar
15. Balamurugan, S. K. A., Rajeswari, S., Materials Letters 59 (24–25), 31383143 (2005).Google Scholar
16. Sui, Z. Y. G. J.H., Cai, W., Zhang, Z.G., Materials Science and Engineering: A 454–455, 472476 (2007).Google Scholar
17. Maeng, L. A. S., Tyson, T.A., Cote, P., Surface and Coatings Technology 200 (20–21), 57675777 (2006).Google Scholar
18. Maan Aziz-Kerrzo, K. G. C., Fenelon, Anna M., Farrell, Sinead T., Breslin, Carmel B., Biomaterials 22, 15311539 (2001).Google Scholar
19. Popa, I. D. M.V., Suh, S.-H., Vasilescu, E., Drob, P., Ionita, D., Vasilescu, C., Bioelectrochemistry 71 (2), 126134 (2007).Google Scholar
20. Cheng, Y. F. Z. Y., Materials Science and Engineering: A 438–440, 11461149 (2003).Google Scholar
21. Chenglong Liu, G. L., Yang, Dazhi, Qi, Min, Surface & Coatings Technology 200, 40114016 (2006).Google Scholar
22. Liu, C., Leyland, A., Bi, Q. and Matthews, A., Surface & Coatings Technology 141 (2–3), 164173 (2001).Google Scholar
23. Khelfaoui, M. K. Y., Bali, A., Dalard, F., Surface and Coatings Technology 200 (14–15), 45234529 (2006).Google Scholar
24. Wan, N. H. G.J., Yang, P., Zhao, A.S., Sun, H., Leng, Y.X., Chen, J.Y., Wang, J., Wu, Xi, Surface and Coatings Technology 201 (15), 68896892 (2007).Google Scholar
25. Siva, Y. S. D., Krishna, Rama, Surface and Coatings Technology 198 (1–3), 447453 (2005).Google Scholar
26. Li, X. Y., Thaiwatthana, S., Dong, H. and Bell, T., Surface Engineering 18 (6), 448452 (2002).Google Scholar
27. Danián Alejandro López, A. D., Ceré, Silvia Marcela, J Mater Sci: Mater Med 19, 21372144 (2008).Google Scholar
28. Fonseca, F. V. C., Barbosa, M.A., Corrosion Science 46, 30053018 (2004).Google Scholar
29. Liu, Q. B. C., Leyland, A., Matthews, A., Corrosion Science 45 (6), 12431256 (2003).Google Scholar
30. Zeng, A., Liu, E., Annergren, I. F., Tan, S. N., Zhang, S., Hing, R. and Gao, J., Diamond and Related Materials 11 (2), 160168 (2002).Google Scholar
31. Zuo, R. P. Y., Li, W., Xiong, J.P., Tang, Y.M., Corrosion Science 50, 33223328 (2008).Google Scholar
32. Mahdavian, M. M. A. M., Corrosion Science 48, 41524157 (2006).Google Scholar
33. Valero Vidal, A. I. M. C., Corrosion Science 50, 19541961 (2008).Google Scholar
34. Juyoung Ha, T. H. Y., Wang, Yingge, Musgrave, Charles B., Brown, Gordon E. Jr, Langmuir 24 (13), 66836692 (2008).Google Scholar
35. Mohan, K. S. a. S., Journal of Colloid and Interface Science 270, 2128 (2004).Google Scholar