Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:48:24.886Z Has data issue: false hasContentIssue false

Bond valence analysis of ion transport in reverse Monte Carlo models of mixed alkali glasses

Published online by Cambridge University Press:  11 February 2011

Stefan Adams
Affiliation:
GZG, Abt. Kristallographie, Universität Göttingen, D-37077 Göttingen, (Germany)
Jan Swenson
Affiliation:
Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Get access

Abstract

An analysis of RMC structure models of ion conducting glasses in terms of our bond softness sensitive bond-valence method enables us to identify the conduction pathways for a mobile ion as regions of sufficiently low valence mismatch. The strong correlation between the volume fraction F of the “infinite pathway cluster” and the transport properties yields a prediction of both the absolute value and activation energy of the dc ionic conductivities directly from the structural models. Separate correlations for various types of mobile cations can be unified by employing the square root of the cation mass as a scaling factor. From the application of this procedure to RMC models of mixed alkali glasses, the mixed alkali effect, i.e. the extreme drop of the ionic conductivity when a fraction of the mobile ions is substituted by another type of mobile ions may be attributed mainly to the blocking of conduction pathways by unlike cations. The high efficiency of the blocking can be explained by the reduced fractal dimension of the pathways on the length scale of individual ion transport steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isard, J. O., J. Non-Cryst. Solids 1, 235 (1969).Google Scholar
2. Day, D. E., J. Non-Cryst. Solids 21, 343 (1976).Google Scholar
3. Ingram, M. D., Phys. Chem. Glasses 28, 215 (1987).Google Scholar
4. Adams, St. & Swenson, J., Phys. Rev. Lett. 84, 4144 (2000); Phys. Rev. B 63, 054201 (2000).Google Scholar
5. Swenson, J. & Adams, St.; Phys. Rev. B. 64, 024204 (2001).Google Scholar
6. Swenson, J. & Adams, St.; 9th Euroconf. Science and Techn. of Ionics, Rhodos, Sept. 2002.Google Scholar
7. Adams, St. & Swenson, J.; Phys. Chem. Chem. Phys. 4, 3179 (2002).Google Scholar
8. Donnay, G., Allmann, R., Am. Mineral., 55, 1003 (1970).Google Scholar
9. Brown, I. D., The Chemical Bond in Inorganic Chemistry - The bond valence model, Oxford University Press (2002).Google Scholar
10. Brown, I.D., Acta crystallogr., Sect. B: Struct. Sci., 48, 553 (1992) and 53, 381 (1997).Google Scholar
11. Brese, N.E. & O'Keeffe, M. Acta crystallogr., Sect. B: Struct. Sci., 47, 192 (1991).Google Scholar
12. Radaev, S.F., Fink, L. & Trömel, M., Z. Kristallogr. Suppl., 8, 628 (1994).Google Scholar
13. Brown, I.D., J. Appl. Crystallogr. 29, 479 (1996).Google Scholar
14. Adams, St., Maier, J., Solid State Ionics, 105, 67 (1998).Google Scholar
15. Adams, St., Solid State Ionics, 136/137, 1351 (2000).Google Scholar
16. Brown, I.D. & Altermatt, D., Acta crystallogr., Sect. B: Struct. Sci., 41, 244 (1985).Google Scholar
17. Adams, St., Acta crystallogr., Sect. B: Struct. Sci., 57, 278 (2001).Google Scholar
18. Adams, St., softBV parameter tables; http://kristall.uni-mki.gwdg.de/softBV/index.html Google Scholar
19. Parr, R.G. & Pearson, R.G., J. Am. Chem. Soc., 105, 1503 (1983).Google Scholar
20. Pearson, R.G., J. Am. Chem. Soc., 107, 6801 (1985) and Inorg. Chem., 27, 734 (1988).Google Scholar
21. Mulliken, R.S., J. Chem. Phys., 3, 573 (1935).Google Scholar
22. McGreevy, R.L. & Pusztai, L., Molec. Simul., 1, 359 (1988).Google Scholar
23. McGreevy, R.L., Ann. Rev. Mat. Sci., 22, 217 (1992).Google Scholar
24. McGreevy, R.L., Nucl. Inst. Meth. In Phys. Res. A, 354, 1 (1995).Google Scholar
25. Swenson, J. & Adams, Stefan, submitted to Phys. Rev. Lett.Google Scholar
26. Swenson, J., Matic, A., Brodin, A., Börjesson, L. & Howells, W. S., Phys. Rev. B 58, 11331 (1998).Google Scholar
27. Swenson, J. et al., Phys. Rev. B 63, 132202 (2001).Google Scholar
28. Rouse, G. P. Jr, Miller, P. J. & Risen, W. M., J. Non-Cryst. Solids 28, 193 (1978).Google Scholar
29. Hannon, A. C., Vessal, B. & Parker, J. M., J. Non-Cryst. Solids 150, 97 (1992).Google Scholar
30. Uchino, T., Sakka, T., Ogata, Y. & Iwasaki, M. A., J. Non-Cryst. Solids 146, 26 (1992).Google Scholar
31. Habasaki, J., Okada, I. & Hiwatari, Y., J. Non-Cryst. Solids 208, 181 (1996).Google Scholar
32. Swenson, J., Börjesson, L. & Howells, W.S., J. Phys: Cond. Matter, 1999, 11, 9275.Google Scholar
33. Gee, B. & Eckert, H., J. Phys. Chem. 100, 3705 (1996).Google Scholar
34. Ali, F., Chadwick, A. V., Greaves, G. N., Jermy, M. C., Ngai, K. L. & Smith, M. E.; Solid State NMR 5, 133 (1995).Google Scholar
35. Maass, P., Bunde, A. & Ingram, M. D., Phys. Rev. Lett. 68, 3064 (1992);Google Scholar
Bunde, A., Ingram, M. D. & Maass, P., J. Non-Cryst. Solids 172–174, 1222 (1994).Google Scholar
36. Maass, P., J. Non-Cryst. Solids 255, 35 (1999).Google Scholar
37. Greaves, G. N. & Ngai, K. L., Phys. Rev. B 52, 6358 (1995).Google Scholar
38. Kirchheim, R., J. Non-Cryst. Solids 272, 85 (2000).Google Scholar
39. Greaves, G. N., J. Non-Cryst. Solids 71, 203 (1985).Google Scholar
40. Karlsson, C., Mandanici, A., Matic, A., Swenson, J. & Börjesson, L., submitted to Phys. Rev. B.Google Scholar