Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T17:07:49.229Z Has data issue: false hasContentIssue false

A Buried Silicon Nanocrystals Based High Gain Coefficient SiO2/SiOX/SiO2 Strip-Loaded Waveguide Amplifier on Quartz Substrate

Published online by Cambridge University Press:  01 February 2011

Cheng-Wei Lian
Affiliation:
r95941032@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, No. 1, Roosevelt Rd. Sec. 4, Taipei, 10617, Taiwan
Gong-Ru Lin
Affiliation:
grlin@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, 1 Roosevelt Rd. Sec. 4,, Taipei, 10617, Taiwan, +886-2-33663700 ext. 235, +886-2-33669598
Get access

Abstract

Si-rich SiOX strip-loaded waveguide with silicon (Si) nanocrystals contributed amplified spontaneous emission at 750-850 nm with associated spectral linewidth of 140 nm is characterized. By using variable stripe length (VSL) method we demonstrate the optical gain and loss coefficients of 65 and 5 cm−1, respectively, for such a waveguide amplifier. The optical gain and loss coefficients are observed by fitting the one dimensional amplifier equation. The small-signal power gain of 18.4 dB at wavelength of 805 nm under He-Cd laser pumping of 40 mW at 325 nm is obtained from the SiO2/SiOX/SiO2 waveguide amplifier with length of 1 cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pavesi, L. Negro, L. Dal, Mazzoleni, C. Franzò, G. and Priolo, F.Optical gain in Si nanocrystal,” Nature, vol. 408, pp. 440444, (2000).Google Scholar
2. Pellegrino, P. Garrido, B. Garcia, C. Arbiol, J. Morante, J. R. Melchiorri, M. Daldosso, N. Pavesi, L. Scheid, E. and Sarrabayrouse, G.Low-loss rib waveguides containing Si nanocrystal embedded in SiO2,” J. Appl. Phys., vol. 97, pp. 074312, (2005).Google Scholar
3. Luterová, K., Dohnalová, K., Švrcek, V. and Pelant, I.Optical gain in porous silicon grains embedded in sol-gel derived SiO2 matrix under femtosecond excitationAppl. Phys. Lett., vol. 84, pp. 32803282, (2004).Google Scholar
4. Shin, J. H. Lee, J. Han, H.-S., Jhe, J.-H., Chang, J. S. Seo, S.-Y., Lee, H. and Park, N.Si nanocluster sensitization of Er-doped silica for optical amplet using top-pumping visible LEDs,” IEEE J. Sel. Top. Quantum Electron, vol. 12, 783796, (2006).Google Scholar
5. Clement, T. J. DeCorby, R. G. Ponnampalam, N. Allen, T. W. Hryciw, A. and Meldrum, A.Nanocluster sensitized erbium-doped Si monoxide waveguides,” Opt. Exp., vol. 14, pp. 1215112162, (2006).Google Scholar
6. Little, B. E. Member, IEEE, Foresi, J. S. Steinmeyer, G. Thoen, E. R. Chu, S. T. Haus, H. A., Life Fellow, IEEE, Ippen, E. P. Fellow, IEEE, Kimerling, L. C. and Greene, W.Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Phot. Tech. Lett., vol. 10, pp. 549551, (1998).Google Scholar
7. Gardner, D. S. Brongersma, M. L.Microring and microdisk optical resonators using Si nanocrystal and erbium prepared using Si technology,” Optical Materias, vol. 27, pp. 804811, (2005).Google Scholar
8. Jia, K. Wang, W. Tang, Y. Yang, Y. Yang, J. Member, IEEE, Jiang, X., Member, IEEE, Wu, Y., Wang, M. and Wang, Y. Senior Member, IEEE, “Si-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Phot. Tech. Lett., vol. 17, pp. 378380, (2005).Google Scholar
9. Luterová, K., Cazzanelli, M. Likforman, J.-P., Navarro, D. Valenta, J. Ostatnický, T., Dohnalová, K., Cheylan, S. Gilliot, P. Hönerlage, B., Pavesi, L. Pelant, I.Optical gain in nanocrystalline Si: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystal,” Optical Materias, vol. 27, pp. 750755, (2005)Google Scholar