Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:42:13.965Z Has data issue: false hasContentIssue false

Calculation and Simulation of Interdiffusion Coefficients and Ordering Kinetics in Binary Alloys.

Published online by Cambridge University Press:  26 February 2011

M. Atzmon*
Affiliation:
Department of Nuclear Engineering, The University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Rate equations for thermally activated atomic exchange were used to calculate chemical diffusion coefficients for an initially disordered simple-cubic lattice and for a body-centered lattice with equilibrium long-range order. The results show that the chemical enhancement as a function of the enthalpy of mixing saturates, in contrast with results of conventional mean-field theories. Simulations in a disordered alloy agree with the calculations. The existence of longrange order is shown to increase the apparent activation energy for diffusion. The present theory is also shown to provide a simple method of calculating ordering kinetics and equilibrium longrange order, and good agreement with previous experiments and simulations is achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. , Bragg and , Williams, Proc. Roy. Soc. A145, 699 (1934).Google Scholar
2. Bethe, H. A., Proc. Roy. Soc. A150, 552 (1935).Google Scholar
3. Sato, H. and Kikuchi, R., Acta Metall. 2, 797 (1976).CrossRefGoogle Scholar
4. Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, (Oxford University Press, New York 1971), p. 76.Google Scholar
5. Darken, L. S., Trans. AIME 175, 184 (1948).Google Scholar
6. Cheng, Y.-T., Rossum, M. Van, Nicolet, M.-A., and Johnson, W. L., Appl. Phys. Lett. 45, 185 (1984).CrossRefGoogle Scholar
7. Hillert, M., Acta Met. 9, 525,(1961), andGoogle Scholar
J. Cahn, W., Acta Met. 9, 795 (1961).Google Scholar
8. Tu, K. N., in Ann. Rev. Mat. Sc. 15, 147 (1985).Google Scholar
9. Flynn, C. P., Point Defects and Diffusion (Oxford University Press, London 1972), p. 393.Google Scholar
10. Kirkendall, E. O., Trans. AIME 147, 104 (1942).Google Scholar
11. Atzmon, M., J. Mat. Res. 5, 92 (1990).CrossRefGoogle Scholar
12. Cook, H. E., Fontaine, D. de, and Hilliard, J. E., Acta Met. 17, 765 (1969).Google Scholar
13. Atzmon, M., Phys. Rev. Lett. 65, 2889 (1990).CrossRefGoogle Scholar
14. Shewmon, P., Diffusion in Solids (TMS, Warrendale 1989), p. 184.Google Scholar
15. Flinn, P. A. and McManus, G. M., Phys. Rev. 124, 54 (1961).Google Scholar
16. Chipman, D. and Warren, B. E., J. Appl. Phys. 21, 696 (1950).Google Scholar