Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T20:42:49.515Z Has data issue: false hasContentIssue false

Candidate HTSC Film Substrates of Complex Oxide Perovsk1te Compositions

Published online by Cambridge University Press:  15 February 2011

Ruyan Guo
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
A. S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
L. E. Cross
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al1/2Ta1/2)O3 and Sr(Al1/2Nb1/2)O3, Ba(Mg1/3Ta2/3)O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wood, E.A., Amer. Min. 36 768 (1951).Google Scholar
2 Haggerty, J.S., Menashi, W.P. and Wenckus, J.F., U.S. Patent No. 3 944 640 (16 March 1976); U.S. Patent No. 4 012 213 (15 March 1977).Google Scholar
3 Feigelson, R.S., MRS Bull. 13 47 (1988).CrossRefGoogle Scholar
4 Yamamoto, J. and Bhalla, A.S., Mat. Res. Bull. 24 761 (1989).CrossRefGoogle Scholar
5 Wakino, K., Ferroelectrics 91 69 (1989).Google Scholar
6 Nomura, S., Toyama, K., and Kaneta, K., Jpn. J Appl. Phys. 21(10) L624 (1982).Google Scholar
7 Galasso, F. and Pinto, J., Nature vol.207 No. 4992, 70 (1965).Google Scholar
8 e.g., Terashima, T., Iijima, K., Yamamoto, K., Irata, K., Bando, Y., and Takada, T., Jpn. J Appl. Phys. 28, L987 (1989).CrossRefGoogle Scholar
9 Harrison, H.R. and Honig, J.M., Bull. Mater. Sci. 3(3), 247 (1981).CrossRefGoogle Scholar
10 Brandle, C.D. and Fratello, V.J., J Mater. Res. 5(10), 2160 (1990).Google Scholar
11 Han, B., Neumayer, D. A., Goodreau, B.H., Marks, T. J., Zhang, H., and Dravid, V.P., Chem. Mater. (in press).Google Scholar
12 Findikoglu, A.T., Doughty, C., Bhattacharya, S., Xi, Qi Li, X.X., Venkatesan, T., Fahey, R.E., Strauss, A.J., and Phillips, J. M., Appl. Phys. Lett.61 1718 (1992).Google Scholar
13 Findikoglu, A T., Bhattacharya, S., Doughty, C., Pambianchi, M.S., Li, Qi, Xi, X.X., Anlage, S.M., Fahey, R.E., Strauss, A.J., Phillips, J.M., and Venkatesan, T., IEEE Trans. Appl. Superconductivity, 3(1) 1425 (1993).Google Scholar
14 Guo, R., Bhalla, A.S., Sheen, J., Ainger, F., Subbarao, E.C., Erdei, S., and Cross, L.E., J Mat. Res. (in press, 1994).Google Scholar
15 Burbank, R.D., J Appl. Cryst. 3 112 (1970).Google Scholar
16 Muller, O. and Roy, R., in “The major ternary structurafla milies” (Springer-Verlag, Berlin, Heidelberg, New York 1974) p.215.Google Scholar
17 Galasso, F. S., in “Structure, properties and preparation of perovskite-type compounds” (Pergamon Press, Oxford, London, Edinburgh, Now York, Toronto, Sydney, Paris, Braunschweig 1969) p. 10.Google Scholar
18 Guo, R., Ravindranathan, P., Selvaraj, U., Bhalla, A.S., Cross, L.E., and Roy, R., J. Mater. Sci. (in press, 1994).Google Scholar
19 Haussuihl, S. and Mateika, D., Crystal. Res. Technol. 26(4) 481 (1991).Google Scholar
20 Mateika, D., Kohler, H., Laudan, H. and Volkel, E., J Cryst. Growth 109 447 (1991).Google Scholar
21 Shannon, R.D. and Prewitt, C.T., Acta Cryst. B25 (1969) 925;Acta Cryst. B26 1046 (1970).Google Scholar
22 Ravindranathan, P. and Bhalla, A.S. et al. (to be published).Google Scholar
23 Harshe, G., Bhalla, A.S., and Cross, L.E., Materials Letters (in press, 1994)Google Scholar
24 Erdei, S., Cross, L.E., Ainger, F.W., and Bhalla, A.S., J. Cryst. Growth (in press, 1994).Google Scholar
25 Guo, R. and Bhalla, A.S. (to be published).Google Scholar