Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T10:24:05.840Z Has data issue: false hasContentIssue false

Cathodoluminescence Study Of Diffusion Length And Surface Recombination Velocity In III-V Multiple Quantum Well Structures

Published online by Cambridge University Press:  15 February 2011

L.- L. Chao
Affiliation:
Department of Chemical Engineering, Materials Science, and Mining Engineering, and
M. B. Freiler
Affiliation:
Columbia Radiation Laboratory, Columbia University, New York, NY 10027
M. Levy
Affiliation:
Columbia Radiation Laboratory, Columbia University, New York, NY 10027
J.-L. Lin
Affiliation:
Columbia Radiation Laboratory, Columbia University, New York, NY 10027
G. S. Cargill III
Affiliation:
Department of Chemical Engineering, Materials Science, and Mining Engineering, and
R. M. Osgood JR.
Affiliation:
Department of Chemical Engineering, Materials Science, and Mining Engineering, and
G. F. McLANE
Affiliation:
U. S.Army Research Laboratory, Ft. Monmouth, NJ 07703
Get access

Abstract

We describe studies of luminescence and lateral transport properties of excited carriers in GaAs- A1GaAs multiple quantum well (MQW) structures by cathodoluminescence measurements in a scanning electron microscope. We examine the effect of in-plane, etch-defined feature size on MQW luminescence efficiency and variability, and determine the diffusion length and its temperature dependence from ˜ 8K to 250K. Our measurements also provide information about nonradiative surface recombination velocity at the side walls of etch-defined MQW structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Freiler, M. B., Ph. D.thesis, Columbia University, 1995; and Freiler, M. B., McLane, G. F., Kim, S., Levy, M., Scarmozzino, R., Herman, I. P., and Osgood, R. M. Jr., to be published.Google Scholar
[2] Clausen, E. M. Jr., Craighead, H. G., Worlock, J. M., Harbison, J. P., Schiavone, L. M., Florez, L., and Van der Gaag, B., Appl. Phys. Lett. 55, 1427 (1989).Google Scholar
[3] Zarem, H. A., Sercel, P. C., Lebens, J. A., Eng., L. E., Yariv, A., and Vahala, K. J., Appl. Phys. Lett. 55, 1647 (1989).Google Scholar
[4] Akiyana, H., Koshiba, S., Someya, T., Wada, K., Noge, H., Nakamura, Y., Inoshita, T., Shimizu, A., and Sakaki, H., Phys. Rev. Letters 72, 924 (1994).Google Scholar