Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:09:48.989Z Has data issue: false hasContentIssue false

Cathodoluminescence study of orientation patterned GaAs films for non linear optics

Published online by Cambridge University Press:  01 February 2011

Manuel Avella
Affiliation:
manuel@fmc.uva.es, Universidad de Valladolid, Física Materia Condensada, Spain
Juan Jiménez
Affiliation:
jimenez@fmc.uva.es, Universidad de Valladolid, Física Materia Condensada, ETSII, Paseo del cauce s/n, Valladolid, N/A, 47011, Spain, 34983423191, 34983423192
David Bliss
Affiliation:
David.Bliss@hanscom.af.mil, AFRL Hanscom, United States
Candance Lynch
Affiliation:
Candance.Lynch.ctr@hanscom.af.mil, AFRL Hanscom, United States
David Weyburne
Affiliation:
David.Weyburne@hanscom.af.mil, AFRL Hanscom, United States
Get access

Abstract

Zincblende semiconductor materials such as GaAs and ZnSe are very promising for the generation of tunable IR signals by quasi phase-matched nonlinear optical frequency conversion. Orientation patterned GaAs crystals (OP-GaAs) were grown by low-pressure hydride vapor phase epitaxy (HVPE) on lithographically prepared templates.. Cathodoluminescence (CL) imaging was used to study these epitaxial films, which consist of periodic domains of inverted crystallographic orientation. The challenge is to achieve thick, vertical domains and to minimize sources of optical loss. Both the domain walls and crystal defects may contribute to transmission losses, therefore, a characterization of both is necessary to improve the OP-GaAs crystal performance. The stress and non radiative recombination activity of the domain walls were investigated. The presence of dislocation glide was revealed and CL spectral imaging was used to observe the stress distribution around both the domain walls and the dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Linnerud, I., Kaspersen, P., Jaeger, T.; Appl. Phys. B 67, 297 (1998)Google Scholar
2) Levi, O., Pinguet, T. J., Skauli, T., Eyres, L. A., Parameswaran, K. P., Harris, J. S., Fejer, M. M., Bisson, S. E., Gerard, B., Lallier, E., Becouarn, L.; Opt. Lett. 27, 2091 (2002)Google Scholar
3) Vodopyanov, K. L., Levi, O., Kuo, P. S., Pinguet, T. J., Harris, J. S., Fejer, M. M., Gerard, B., Becouarn, L., Lallier, E.; Opt. Lett. 29, 1912 (2002)Google Scholar
4) Eyres, L. A., Tourreau, P. J., Pinguet, T. J., Ebert, C. B., Harris, J. S., Fejer, M. M., Becouarn, L., Gerard, B., Lallier, E.; Appl. Phys. Lett. 79, 904 (2001)Google Scholar
5) Strite, S., Wisbas, D., Kumar, N. S., Fradkin, M., Morkoc, H.; Appl. Phys. Lett. 56, 244, (1997)Google Scholar
6) Ibáñez, J., Cuscó, R., Artús, L., de la Puente, E., Jiménez, J., Nuclear Instr. and Methods, part B 175, 246 (2001)Google Scholar
7) Gavini, A., Cardona, M.; Phys. Rev. B 1, 672 (1970)Google Scholar
8) Pavesi, L., Guzzi, M.; J. Appl. Phys. 75, 4779 (2000)Google Scholar
9) Martin, P., Jimenez, J., Frigeri, C., Sanz, L. F., Weyher, J.; J. Mater. Res. 14, 1732 (1999)Google Scholar
10) Li, E. H.; Phys. E 5, 215 (2000)Google Scholar