Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T10:37:25.791Z Has data issue: false hasContentIssue false

Changing the Interface Cementitious Materials/Aqueous Solution For Performing Electroosmosis

Published online by Cambridge University Press:  21 February 2011

A. J. Kuin
Affiliation:
Laboratory of Colloid Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 KB EINDHOVEN, the Netherlands.
H. N. Stein
Affiliation:
Laboratory of Colloid Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 KB EINDHOVEN, the Netherlands.
Get access

Abstract

Removal of excess water from cement/sand/water mixes can be effected by electroosmosis with an efficiency of several hundred g per Watt sec, if an additive is applied which increases the absolute value of the zeta potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schwerin, B., Ger.Pat. 124509 (4.4.1900); 124510 (30.5.1900); 128085 (30.5.1900); 131932 (26.9.1901); 150069 (25.11.1902).Google Scholar
2 Grigoryan, Yu.M. and Osipov, L.A., Gidrotekh.Stroitel. 25 (nr. 10), 25 (1956); Chem.Abstr. 51, 5384c.Google Scholar
3 Timofeev, Yu.L., Izo.Vyssh.Ucheb.Zaved., Stroit.Arkhitekt. LL (nr. 2), 71–76 (1968), Chem.Abstr. 69, 29910 g.Google Scholar
4 Cooling, L.F., Jones, E.E. and Pettet, A.E.J., Water and Sanitary Engnr. 3, 246250 (1952).Google Scholar
5 Farmer, J.W., in: Methods of Treatment of Unstable Ground, F.G., Bell (ed.), London, Newnes-Butterworth, 1975, p. 26.Google Scholar
6 Lockhardt, N.C. and Stickland, R.E., Powder Technology, 40, 215221 (1984).Google Scholar
7 Zelwer, A., Proc.7th Int.Congress Chem. Cement, Paris 1980, Vol. II, Theme II, 147152.Google Scholar
8 Stein, H.N., J.Colloid Sci. 15, 578 (1960).Google Scholar
9 Stein, H.N., J.Coll.Int.Sci. 28, 203 (1968).Google Scholar
10 Spierings, G.A.C.M. and Stein, H.N., Colloid & Polymer Sci. 257, 171177 (1979).Google Scholar
11 Ottewill, R.H. and Watanabe, A., Kolloid-Zeitschr. 170, 132 (1960).Google Scholar
12 Kuin, A.J., Electrokinetic and Hydrodynamic Transport Through Porous Media, Ph.D. Thesis, Eindhoven 1986.Google Scholar
13 Kuin, A.J., Ogrinc, H.J.A. and Stein, H.N., Colloids and Surfaces 27, 6580 (1987).Google Scholar
14 Lockhardt, N.L., Colloids and Surfaces 6, 229 (1983).Google Scholar
15 Ykawa, H., Yoshida, H., Kobayashi, K. and Hakoda, M., J.Chem. Eng. Japan 9, 402 (1976).Google Scholar
16 Dukhin, S.S. and Derjaguin, B.V., in E., Matijevic (ed.), Surface and Colloid Science Vol.7, Plenum, New York, 1977.Google Scholar
17 de Jong, J.G.M., Stein, H.N. and Stevels, J.M., J.Appl.Chem. 19, 25 (1969).Google Scholar
18 Stein, H.N., J.Appl.Chem. 15, 314 (1965).Google Scholar
19 Corstanje, W.H., Stein, H.N. and Stevels, J.M., Cem. Concr.Res. 3, 791 (1973).Google Scholar
20 Lerch, W., Proc.Amer.Soc.Test Materials 46, 1252 (1946).Google Scholar
21 Stein, H.N., J.Appl.Chem. 11, 474482 (1961).Google Scholar
22 Rampacek, C., in Poole, J.B. and D., Doyle (eds.), Solid-Liquid Separation, London, Her Majesty's Stationary Office 1966, p. 100108.Google Scholar