Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:25:38.760Z Has data issue: false hasContentIssue false

Characteristic Temperature Estimation for GaN-Based Lasers

Published online by Cambridge University Press:  15 February 2011

T. Honda
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan, e-mail: ctl1761@ns.kogakuin.ac.jp TEL:+81-426-22-9291 ext. 3440 FAX: +81-426-25-8982
H. Kawanishi
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan, e-mail: ctl1761@ns.kogakuin.ac.jp TEL:+81-426-22-9291 ext. 3440 FAX: +81-426-25-8982
T. Sakaguchi
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan, e-mail: ctl1761@ns.kogakuin.ac.jp TEL:+81-426-22-9291 ext. 3440 FAX: +81-426-25-8982
F. Koyama
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
K. Iga
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Get access

Abstract

We have estimated the characteristic temperature T0 of GaN-based vertical-cavity surface-emitting lasers. The density matrix theory including intraband relaxation broadening has been taken into account. The estimated T0 is about 300 K, which suggests a good temperature characteristic in GaN-based lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maruska, H. P. and Tietjen, J. J.: Appl. Phys. Lett. 15, 327 (1969).Google Scholar
2. Akasaki, I., Amano, H., Sota, S., Sakai, H., Tanaka, T. and Koike, M.: Jpn. J. Appl. Phys. 34, L1517 (1995).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y.: Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
4. Praire, M. W. and Kolbas, R. M.: Superlattice and Microstructures 7, 269 (1990).Google Scholar
5. Wei, S. H. and Zunger, A.: Appl. Phys, Lett. 69, 2719 (1996).Google Scholar
6. Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A., Morkoç, H., Lambrecht, W. R. L. and Segall, B.: Appl. Phys. Lett. 65, 610 (1994).Google Scholar
7. Kroemer, H.: Surf. Sci. 174, 299 (1985).Google Scholar
8. Asada, M. and Suematsu, Y.: IEEE J. Quantum Electron. 21, 434 (1985).Google Scholar
9. Asada, M., Kameyama, A. and Suematsu, Y.: IEEE J. Quantum Electron. 20, 745 (1984).Google Scholar
10. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H.: Appl. Phys. Lett. 69, 1568 (1996).Google Scholar
11. Honda, T., Katsube, A., Sakaguchi, T., Koyama, F. and Iga, K.: Jpn. J. Appl. Phys. 34, 3527 (1995).Google Scholar
12. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H.: Jpn. J. Appl. Phys. 36, L1059 (1997).Google Scholar
13. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y.: 43rd Spring Meet. Jpn. Soc. Appl. Phys. & Related Soc., 29aZB-14, Asaka (1996).Google Scholar
14. Dutta, N. K.: J. Appl. Phys. 53, 7211 (1982).Google Scholar
15. Chong, T.-H. and Kishino, K.: IEEE J. Quantum Electron. 27, 1501 (1991).Google Scholar