Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T23:51:13.446Z Has data issue: false hasContentIssue false

Characteristics of Ultra violet-Assisted Pulsed Laser Deposited Thin Oxide Films

Published online by Cambridge University Press:  10 February 2011

V. Craciun
Affiliation:
Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611
R.K. Singh
Affiliation:
Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

The properties of thin oxide films such as Y2O3, ZnO and Ba0.5Sr0.5TiO3 grown using an in situ ultraviolet (UV)-assisted pulsed laser deposition (UVPLD) technique have been studied. With respect to films grown by conventional PLD under similar conditions but without UV illumination, the UVPLD grown films exhibited better structural and optical and electrical properties, especially for lower substrate temperatures. They also exhibited a better stoichiometry and contained less physisorbed oxygen than the conventional PLD grown layers. These improvements can be traced to several factors. Firstly, deep UV photons and ozone ensure a better in situ cleaning of the substrate prior to the deposition. Secondly, the presence of more reactive gaseous species like ozone and atomic oxygen formed by photodissociation of molecular O2 promotes the growth of more oxygenated films. Thirdly, absorption of UV photons by adatoms could result in an increased of their surface mobility. All these factors have a beneficial effect upon crystalline growth, especially for moderate substrate temperatures. For optimised growth conditions, the crystalline quality and properties of ultraviolet-assisted pulsed laser deposited films was similar to that of films grown using conventional PLD at substrate temperatures of at least 200°C higher.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Singh, R. K. and Narayan, J., Phys. Rev. B 43, 8843 (1990).Google Scholar
2 Singh, R. K. and Kumar, D., Mat. Sci. Engr. Reports R 22, 113 (1998).Google Scholar
3 Park, J., Rouleau, C. M., and Lowndes, D. H., MRS Symp. Proc. Vol. 526, p. 27 (1998).Google Scholar
4 McKee, R. A., Walker, F. J., Conner, J. R., Appl. Phys. Lett. 59, 782 (1991).Google Scholar
5 Prusseit, W., Corsepius, S., Zwerger, M., Physica C 201, 249 (1992).Google Scholar
6 Horwitz, J. S., Grabowski, K. S., Chrisey, D. B., and Leuchtner, R. E., Appl. Phys. Lett. 59, 1565 (1991).Google Scholar
7 Nagabhusman, R. and Singh, R. K., in Transient Thermal processing of Materials, Ravindrai, D. N. and Singh, R. K. editors, TMS publications, Warrendale PA, 1997.Google Scholar
8 Gluck, N. S., Sankur, H., and Gunning, W. J., J. Vac. Sci. Tecnol. A 7, 2983 (1989).Google Scholar
9 Reisse, G., Keiper, B., Weissmantel, S., Johansen, H., Scolz, R., and Martini, T., Thin Solid Films 241, 119 (1994).Google Scholar
10 Holzapfel, B., Betz, V., Schlafer, D., Bauer, H.D., and Schultz, L., IEEE Tran. Appl. Supercond. 9, 1051 (1999).Google Scholar
11 Koren, G., Gupta, A., and Baseman, R. J., Appl. Phys. Lett. 54, 1920 (1989).Google Scholar
12 Otis, C. E., Gupta, A., and Braren, B., Appl. Phys. Lett. 62, 102 (1993).Google Scholar
13 Tabata, H., Kawai, T., and Kawai, S., Appl. Phys. Lett. 58, 1443 (1991).Google Scholar
14 Otsubo, S., Minamikawa, T., Yonezawa, Y., Maeda, T., Morimoto, A., and Shimizu, T., Jap. J. Appl. Phys. 28, 2211 (1989).Google Scholar
15 Morimoto, A., Mizukami, S., Shimizu, T., Mater. Res. Soc. Symp. Proc. 275, 371 (1992).Google Scholar
16 Horwitz, J. S., Chrisey, D. B., Grabowski, K. S., Carosella, C. A., Lubitz, P., and Edmondson, C., Mater. Res. Soc. Symp. Proc. 285, 391 (1993).Google Scholar
17 Estler, R. C., Nogar, N. S., Muenchausen, R. E., Dye, R. C. Flamme, C. Martin, J. A., Garcia, A. R., and Foltyn, S., Mat. Lett. 9, 342 (1990).Google Scholar
18 Boulmer-Leborgne, C., Thomann, A. L., Andreazza, P., Andreazza-Vignolle, C., Hermann, J., Craciun, V., Echegut, P., Craciun, D., Appl. Surf. Sci. 125, 137 (1998).Google Scholar
19 Wengenmair, H., Gerlach, J. W., Preckwinkel, U., Stritzker, B., and Rauschenbach, B., Appl. Surf. Sci. 99, 313 (1996).Google Scholar
20 Craciun, V., Craciun, D., and Boyd, I. W., Electronics Letters 34, 1527 (1998)Google Scholar
21 Craciun, V., Boyd, I. W., Craciun, D., Andreazza, P., Perriere, J., Appl. Surf. Sci. 138–139, 587 (1999).Google Scholar
22 Craciun, V., Boyd, I. W., Craciun, D., Andreazza, P., and Perriere, J., J. Appl. Phys. 85, 84108414 (1999).Google Scholar
23 Cho, K. G., Kumar, D., Jones, S. L., Lee, D. G., Holloway, P. H., and Singh, R. K., J. Electrochem. Soc. 145, 3456 (1998).Google Scholar
24 Craciun, V. and Singh, R.K., Electrochemical Solid-State Letters 2, 446 (1999).Google Scholar
25 Craciun, V. and Singh, R. K., Appl. Phys. Lett., 76, 1932 (2000).Google Scholar
26 Craciun, V., Singh, R.K., Perriere, J., Spear, J., and Craciun, D., J. Electrochem. Soc. 147, 1077 (2000).Google Scholar
27 Baulch, D. L., Cox, R. A., Hampson, R. F. Jr,Kerr, J. A., Troe, J., and Watson, R.T., J. Phys. Chem. Ref. Data 9, 295 (1980).Google Scholar
28 Pearton, S. J., Ren, F., Abernathy, C. R., Hobson, W. S., and Luftman, H. S., Appl. Phys. 58, 1416 (1991).Google Scholar
29 Moon, D. W., Kurokawa, A., Ichimura, S., Lee, H. W., and Jeon, I. C., J. Vac. Sci. Technol. A 17, 150 (1999).Google Scholar
30 Craciun, V., Perriere, J., Bassim, N., Singh, R.K., Craciun, D., and Spear, J., Appl. Phys. A 69 S531, Suppl. S Dec. (1999).Google Scholar
31 Ingo, G. M. and Marietta, G., Nucl. Instr. Meth. B 116, 440 (1996).Google Scholar
32 Duraud, J. P., Joliet, F., Thromat, N., Gautier, M., Maire, P., Gressus, C. le, and Dartyge, E., J. Am. Ceram. Soc. 73, 2467 (1990).Google Scholar
33 Craciun, V., Lambers, E. S., Bassim, N. D., Singh, R.K., and Craciun, D., J. Mater. Res. 15, 488 (2000).Google Scholar
34 Doolittle, L. R., Nucl. Instr. Methods Phys. Res. B 15, 227 (1986).Google Scholar
35 Handbook of optical constants of solids II, pp. 10901092, Ed. by Palik, D., Boston, Academic Press 1991.Google Scholar
36 Hwang, C. S., Lee, B. T., Kang, C. S., Kim, J. W., Lee, k. H., Cho, H. J., Horii, H., Kim, W. D., Lee, S. I., Roh, Y. B., and Lee, M. Y., J. Appl. Phys. 83, 3703 (1998).Google Scholar
37 McKee, R. A., Walker, F. J., and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar