Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T20:40:22.196Z Has data issue: false hasContentIssue false

Characterization of CDTE Films, Useful In All Thin-Films Solar Cells. I. CD Vacancies And Photoluminescence Spectra

Published online by Cambridge University Press:  26 February 2011

J. M. Figueroa
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO. Escuela Superior de Fisica y Matematicas del IPN. Apartado Postal 75–702. 07738 Mexico D.F. MEXICO.
C. Vazquez-Lopez
Affiliation:
Instituto de Ciencias. Universidad Autonoma de Puebla. 72570 Puebla, Pue. MEXICO.
F. Sanchez-Sinencio
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO.
J. G. Mendoza-Alvarez
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO. Instituto de Ciencias. Universidad Autonoma de Puebla. 72570 Puebla, Pue. MEXICO.
O. Zelaya
Affiliation:
Departamento de Fisica. Centro de Investigacin del IPN. Apartado Postal 14–740. 07000 Mexico D.F. MEXICO.
Get access

Abstract

Polycrystalline CdTe films were grown by a hot-wall-close space vapor transport technique. In-doped CdTe films were grown onto conductive tin-oxide glass substrates. In order to produce Cd-vacancies, the films were photocorroded using the electrochemical arrangement reported by C. Vazquez-Lopez et al [4]. CdTe films were photocorroted during different times of illumination. Photoluminescence spectra of these films showed that the peak at 1.55eV grows with the photocorrosion time. Our results indicate that the 1.55 peak is associated to Cd-vacancies which are produced during the photo-corrosion process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fulop, G., Doty, M., Meyers, P., Betz, J. and Liu, C.H. Appl. Phys. Lett. 40, 327 (1982).Google Scholar
2. Tyan, Y.S. and Perez-Aibuerne, E.A., Proc, of the 16th IEEE Photovoltaic Specialists Conference (IEEE, New York, 1983), p.794.Google Scholar
3. Werthen, J.G., Fahrenbruch, A.L., Bube, R.H. and Zesch, J.C. J. Appl. Phys. 54, 2750 (1983).Google Scholar
4. Vazquez-Lopez, C., Sanchez-Sinencio, F., Helman, J.S., Pen¯, J.L., Lastras-Martinez, A., Raccah, Paul M., Robert Tri boulet J. Appl. Phys. 50, 5391 (1979).Google Scholar
5. Menezes, Cornelius A., Sanchez-Sinencio, F., Sosa E, A., Vazquez-Lopez, C. Solar Energy Materials 11, 401 (1985).Google Scholar
6. Menezes, Cornelius, Fortmann, Charles and Casey, Sean J.Electrochem. Soc. 132, 709 (1985).Google Scholar
7. Ellis, A.B., Kaiser, S.W. and Wrighton, M.S. J. Am. Chem. Soc. 98, 6418 (1976).Google Scholar
8. Tenne, R. and Hodes, G. Appl. Phys. Lett. 37, 428 (1980).Google Scholar
9. Muller, N. and Tenne, R. Appl. Phys. Lett. 39, 283 (1981).Google Scholar
10. Saldana, Xochitl I., Vazquez-Lopez, C., Zehe, A., Navarro, H., Triboulet, R. Appl. Phys. Lett. 39, 433 (1981).Google Scholar
11. Cardenas, M., Mendoza-Alvarez, J.G., Sanchez-Sinencio, F., Zelaya, O., Menezes, C., J. Appl. Phys. 56, 2977 (1984).Google Scholar
12. Zanio, K.R., Semiconductor and Semimetals, Vol. 13 (CdTe). (Academic Press, New York, 1978).Google Scholar
13. Myers, T.H, Schetzina, J.F., Edwards, S.T. and Schreiner, A.F. J. Appl. Phys. 54, 4232 (1983).Google Scholar
14. Norris, C.B., Zanio, K.R. J. Appl. Phys. 53, 6347 (1982).Google Scholar
15. Bryant, F.J., Totterdell, H.J. and Hagston, W.E. J.Phys. C 4, 641 (1971).Google Scholar