Published online by Cambridge University Press: 31 January 2011
Etching of hydrogen-terminated Si(100) in deoxygenated water produces surfaces with a regular nanoscale topography. Surface infrared spectroscopy provides detailed information about this topography via interrogation of the silicon hydride species that populate this highly ordered surface. Here we investigate the feasibility of using siloxane chemistry to functionalize this surface while preserving the initial topography. The critical step in silanization to form high-quality organic layers is oxidative cleaning of the surface. By re-etching oxidized surfaces in hydrofluoric acid, we can repopulate surface hydride species and examine any apparent changes in topography that resulted from the oxidation step. We compare three different oxidation protocols and find that an SC-2 clean results in the least perturbation of the original topography. Preliminary results using both dynamic contact angle and atomic force microscopy suggest that the SC-2 oxidized surface can be functionalized with alkylsilane reagents to create a functionalized surface with regular, nanoscale topography, with all surface processing carried out under ambient conditions at or near room temperature.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.