Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T05:52:44.907Z Has data issue: false hasContentIssue false

Chemical Structure of MEH-PPV/LiF/Al Interface

Published online by Cambridge University Press:  11 February 2011

X. D. Feng
Affiliation:
Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
D. Grozea
Affiliation:
Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
Z. H. Lu
Affiliation:
Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
Get access

Abstract

We studied the poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)/LiF/Al interface by angle-dependent X-ray photoemission spectroscopy (XPS). The changes in the C1s, O 1s, Al 2p core level spectra, and the evolution of O to C and Li to F atomic ratios at different photoelectron take-off angles were carefully analyzed. A reduced oxygen concentration with a LiF layer at the interface suggests that LiF can help reduce the oxidation of Al. The interface was found rich in Li+ ions, some of which might be attached to MEH-PPV to form “N type” doping. The electron injection layer consists of Li+doped MEH-PPV, LiF, Al oxides, and metallic Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paker, I. D., J. Appl. Phys. 75, 1656 (1994).CrossRefGoogle Scholar
2. Mc Elvain, J., Antoniads, H., Hueschen, M. R., Miller, J. N., Roitman, D. M., Sheats, J. R., and Moon, R. L., J. Appl. Phys. 80, 6002 (1996).CrossRefGoogle Scholar
3. Hung, L. S., Tang, C. W., and Mason, M. G., Appl. Phys. Lett. 152, 1997 Google Scholar
4. Lee, J., Park, Y., Lee, S. K., Cho, E.-J., Kim, D. Y., Chu, H. Y., Lee, H., Do, L.-M., and Zyung, T., Appl. Phys. Lett. 80, 3123 (2002).CrossRefGoogle Scholar
5. Wakimoto, T., Fukuda, Y., Nagayama, K., Yokoi, A., Nakada, H., and Tsuchida, M., IEEE Trans. Electron devices 44, 1245 (1997)CrossRefGoogle Scholar
6. Jabbour, G. E., Keppelen, B., Armstrong, N. R., and Peyghambarian, N., Appl. Phys. Lett. 73, 1185 (1998).CrossRefGoogle Scholar
7. Brown, T. M., Friend, R. H., Millard, I. S., Lacey, D. J., Burroughes, J. H., Cacialli, F., Appl. Phys. Lett. 77, 3096 (2000).CrossRefGoogle Scholar
8. Piromreun, P. P., Oh, H. S., Shen, Y. L., Malliaras, G. G., Scott, J. C., and Brock, P.J., Appl. Phys. Lett. 77, 2403 (2000).CrossRefGoogle Scholar
9. Hung, L. S., Zhang, R. Q., He, P., and Mason, M.G., J. Phys. D: Appl. Phys. 35, 103 (2002).CrossRefGoogle Scholar
10. Le, Q. T., Yan, L., Gao, Y., Mason, M.G., Giesen, D.J., and Tang, C.W., J. Appl. Phys. 87, 375 (2000).CrossRefGoogle Scholar
11. Heil, H., Steiger, J., Karg, S., Gastel, M., Ortner, H., von Seggern, H., and Stöβel, M., J. Appl. Phys. 89, 420 (2001).CrossRefGoogle Scholar
12. Murase, A., Ishii, M., Tokito, S., and Taga, Y., Anal. Chem. 73, 2245 (2001).CrossRefGoogle Scholar
13. Feng, X. D., Grozea, D., Turak, A., Lu, Z. H., Aziz, H., and Hor, A-M.. MRS Proceedings V 725, P4.8 (2002).CrossRefGoogle Scholar
14. Feng, X. D., Grozea, D., Lu, Z. H. (unpublished data).Google Scholar
15. van Gennip, W. J. H. van Duren, J. K. J., Thune, P. C., Janssen, R. A. J., Niemantsverdriet, J. W., J. Chem. Phys. 117, 5031 (2002).CrossRefGoogle Scholar
16. Yang, X. H., Mo, Y.Q., Yang, W., Yu, G., Cao, Y., Appl. Phys. Lett. 79, 563 (2001).CrossRefGoogle Scholar