Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T12:07:02.664Z Has data issue: false hasContentIssue false

Chemistry and the Electronic Properties of Diamond Surfaces

Published online by Cambridge University Press:  10 February 2011

Pehr E. Pehrsson*
Affiliation:
*Code 6174, Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375-5342
Get access

Abstract

The structure and chemistry of annealed and oxygen or hydrogen-terminated low-index (100, 110) diamond surfaces was determined with high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED) and other techniques. HREELS revealed carbonyl, hydroxyl and bridge-bonded oxygen groups on oxidized C(100) and C(110) surfaces. The surface chemistry was correlated with secondary electron emission spectra and other data. The oxidized and annealed (reconstructed) surfaces exhibited larger work functions and electron affinity than hydrogenated surfaces, which we attribute to both band-bending and dipole layer effects due to surface oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pehrsson, P.E., Long, J.P., Marchywka, M. J., Butler, J.E., Appl. Phys. Lett., in pressGoogle Scholar
2. Zangwill, A., Physics at Surfaces, Cambridge Univ. Press, Cambridge, 1989 Google Scholar
3. Ando, T., Yamamoto, K., Ishii, M., Kamo, M., Sato, Y., J. Chem. Soc., Far. Trans., 89(9), 1383, (1993)Google Scholar
4. Kuttel, O. M., Diederich, L., Schaller, E., Carnal, O., Schlapbach, L., Surf. Sci., 337, L812 (1995)Google Scholar
5 Harris Corp., 100 Stierli Ct., Suite 106, Mt. Arlington, N.J., 07856Google Scholar
6. Thoms, B.D., Russell, J.N., Pehrsson, P.E., Butler, J.E., J. Chem. Phys., 100(11), 8425 (1994)Google Scholar
7. Oelhafen, P., Freeouf, J.L., J. Vac. Sci. Technol. A, 1(1), 96 (1983)Google Scholar
8. Pehrsson, P. E., 187th Mtg. of the Electrochem. Soc., Paper 245, Reno, Nev., May 21–26, 1995 Google Scholar
9. Pate, B.B., Surf. Sci., 165, 83 (1986)Google Scholar
10. Eimori, N., Mori, Y., Hatta, A., Ito, T., Hiraki, A., Jpn. J. Appl. Phys., Pt. 1, 33(11), 6312 (1994)Google Scholar
11. Shih, A., Yater, J., Pehrsson, P.E., Butler, J. E., Abrams, R., Hor, C., Paper DD8.13, Proceedings, Fall 1995 Meeting of the Materials Research Society, in press.Google Scholar
12. Malta, D.P., Posthill, J.B., Humphreys, T.P., Thomas, R.E., Fountain, G.G., Rudder, R.A., Hudson, G.C., Mantini, M.J., Markunas, R.J., Appl. Phys. Lett., 64(15), 1929 (1994)Google Scholar
13. Van der Weide, J., Zhang, Z., Baumann, P.K., Wensell, M.G., Bernholc, J., Nemanich, R.J., Phys. Rev. B, 50, 5803 (1994)Google Scholar