Published online by Cambridge University Press: 31 January 2011
Despite much progress in recent years, the nature of microcracking in bone at the nano-meter scale is still not well understood. This is partly due to the complexity of bone's hierarchical structure, but also to the difficulty of detecting cracks at very fine scales. Bone microcracking is typically detected using fluorescent dye staining techniques followed by optical or laser microscopy examinations. However, fluorescence-based methods are limited to sub-micron resolution and do not fit three-dimensional imaging such as micro-CT or high resolution imaging such as electron microscopy. This pilot study explores the potential of a heavy metal staining technique to label nano-sized cracks in bone that could be detected by electron microscopy and, albeit at a larger scale, by micro-computed tomography. Upon further development, the method described here may lead to the nano-meter scale characterization of bone microcracking.