Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T11:59:48.287Z Has data issue: false hasContentIssue false

CO2 Laser Crystallization of Silicon on Bulk Fused Silica

Published online by Cambridge University Press:  15 February 2011

William G. Hawkins
Affiliation:
Xerox Webster Research Center, W201L, 800, Phillips Rd., Webster, N.Y., 14580, USA
Jerry G. Black
Affiliation:
Xerox Webster Research Center, W201L, 800, Phillips Rd., Webster, N.Y., 14580, USA
Clifford H. Griffiths
Affiliation:
Xerox Webster Research Center, W201L, 800, Phillips Rd., Webster, N.Y., 14580, USA
Get access

Abstract

A CO2 laser beam was used to heat bulk fused silica which had previously defined Si3N4 and Si02 encapsulated LPCVD polysilicon islands (25,μm × 100μm) on its surface. The recrystallization process produces single crystal islands under a wide variety of laser treatment parameters. Under certain conditions, the recrystallized islands exhibit a (100) plane parallel to the substrate. These results are the first demonstration of oriented single crystal thin film growth using island predefinition, which eliminates thermal stress induced microcracking resulting from the mismatch in expansion between silicon and bulk fused silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamins, T. I. and Pianetta, P. A., IEEE Electron Device Letters, EDL1, 214(1980).CrossRefGoogle Scholar
2. Biegelsen, D. K., Johnson, N. M., Bartelink, D. J. and Moyer, M. D., in Laser and Electron-Beam Solid Interactions and Materials Processing, Gibbons, Hess and Sigmon, eds. (Elsevier North Holland N.Y. 1981), 487.Google Scholar
2a Biegelsen, D. K., Johnson, N. M., Bartelink, D. J. and Moyer, M. D., Appl. Phys. Lett. 38, 150 (1981).Google Scholar
3. Geis, M. W., Flanders, D. C. and Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).CrossRefGoogle Scholar
4. Geis, M. W., Antoniadis, D. A., Silversmith, D. J., Mountain, R. W. and Smith, H. I., Appl. Phys. Lett. 37, 454 (1980).Google Scholar
5. Stultz, T. J. and Gibbons, J. F., Appl. Phys. Lett. 39, 498 (1981).Google Scholar
6. Cleek, G. W., Appl. Optics 5, 771 (1966).Google Scholar
7. Weinberg, Z. A., Appl. Phys. Lett. 39, 421 (1981).Google Scholar
8. Hawkins, W. G., Black, J. G. and Griffiths, C. H., accepted for publication in Appl. Phys. Lett.Google Scholar
9. Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., in Laser and Electron-beam Solid Interactions and Materials Processing, Gibbons, Hess and Sigmon, eds.,(Elsevier North- Holland N.Y. 1981) p.463 Google Scholar
10. Lampert, M. O., Koebel, J. M. and Siffert, P., J. Appl. Phys. 52, 4975 (1981).Google Scholar
11. Isomae, S., Tamaki, Y., Yajima, A., Nanba, M. and Maki, M., J. Electrochem. Soc. 126, 1014 (1979).CrossRefGoogle Scholar