Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T11:55:25.726Z Has data issue: false hasContentIssue false

Collisional Energy Deposition Threshold for Extended Damage Depths in Ion-Implanted Silicates

Published online by Cambridge University Press:  28 February 2011

G. W. Arnold
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
G. Battaglin
Affiliation:
Consorzio INFM, Dipartimento di Chimica Fisica, Universita di Venezia, Italy
A. Boscolo-Boscoletto
Affiliation:
ECP-EniChem Polimeri, Porto Marghera (Venezia), Italy
F. Caccavalle
Affiliation:
Consorzio INFM, Dipartimento di Fisica, Universita di Padova, Italy
G. De Marchi
Affiliation:
Consorzio INFM, Dipartimento di Fisica, Universita di Padova, Italy
P. Mazzoldi
Affiliation:
Consorzio INFM, Dipartimento di Fisica, Universita di Padova, Italy
Get access

Abstract

Many properties of implanted fused silica (e.g., surface stress, hardness) exhibit maximum implantation-induced changes for collisional energy deposition values of ∼1020 keV/cm3. We have observed a second critical energy deposition threshold value of about 1022 keV/cm3 in stress and hardness measurements as well as in many other experiments on silicate glasses (leaching, alkali depletion, etching rate, gaseous implant redistribution). The latter show evidence for damage depths exceeding TRIM ranges by about a factor of 2. For crystalline quartz, a similar threshold value value has been found for extended damage depths (greater than TRIM) for 250 kev ions (H-Au) as measured by RBS and interference fringes. This phenomenon at high damage deposition energy may involve the large stress gradients between damaged and undamaged regions and the much increased diffusion coefficient for defect transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. EerNisse, E. P., J. Appl. Phys. 45, 167 (1974).CrossRefGoogle Scholar
2. Arnold, G. W., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C. M., Stone, J. A., and Ewing, R. C. (Elsevier Science Publishers, New York, 1984) pp. 617622.Google Scholar
3. Arnold, G. W., Rad. Effects 98, 55 (1986).CrossRefGoogle Scholar
4. Arnold, G. W., Rad. Effects 65, 17 (1982).Google Scholar
5. Presby, H. M. and Brown, W. L., Appl. Phys. Lett. 24, 511 (1974).CrossRefGoogle Scholar
6. Arnold, G. W. and Mazzoldi, P., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier Science Publishers, Amsterdam, 1987) pp. 195222;Google Scholar
Matzke, Hi., Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier Science Publishers, Amsterdam, 1987), pp. 501530;Google Scholar
Delia Mea, G., Dran, J.-C., and Petit, J.-C., Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier Science Publishers, Amsterdam, 1987) ibid., pp. 531557.Google Scholar
7. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Ranees of Ions in Solids, (Pergamon, New York, 1985).Google Scholar
8. Arnold, G. W., Battaglin, G., Bosco-Boscoletto, A., Caccavale, F., De Marchi, G., Mazzoldi, P., and Miotello, A., in Proceedings of Radiation Effects in Insulators-6, Weimar, Germany, June 2428, 1991, (to be published).Google Scholar
9. Delia Mea, G., Dran, J.-C., Petit, J.-C., Bezzon, G., and Rossi-Alvarez, C., Nucl. Instrum. and Meth. 218, 493 (1983).Google Scholar
10. Delia Mea, G., Rossi-Alvarez, C., Mazzi, G., Bezzon, G., Chaumont, J., Dran, J.-C., Mendenhall, M., and Petit, J.-C., Nucl. Instrum. and Meth. B 19, 94 (1987).Google Scholar
11. Burman, C. and Lanford, W. A., J. Appl. Phys. 54, 2312 (1983).CrossRefGoogle Scholar
12. Arnold, G. W., Battaglin, G., Delia Mea, G., De Marchi, G., Mazzoldi, P., and Miotello, A., Nucl. Instrum. and Meth. B 32, 315 (1988).CrossRefGoogle Scholar
13. Miotello, A. and Mazzoldi, P., J. Phys. C: Sol. State Phys. 16, 221 (1983).CrossRefGoogle Scholar