Article contents
Collisional Energy Deposition Threshold for Extended Damage Depths in Ion-Implanted Silicates
Published online by Cambridge University Press: 28 February 2011
Abstract
Many properties of implanted fused silica (e.g., surface stress, hardness) exhibit maximum implantation-induced changes for collisional energy deposition values of ∼1020 keV/cm3. We have observed a second critical energy deposition threshold value of about 1022 keV/cm3 in stress and hardness measurements as well as in many other experiments on silicate glasses (leaching, alkali depletion, etching rate, gaseous implant redistribution). The latter show evidence for damage depths exceeding TRIM ranges by about a factor of 2. For crystalline quartz, a similar threshold value value has been found for extended damage depths (greater than TRIM) for 250 kev ions (H-Au) as measured by RBS and interference fringes. This phenomenon at high damage deposition energy may involve the large stress gradients between damaged and undamaged regions and the much increased diffusion coefficient for defect transport.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 3
- Cited by