Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T18:05:00.376Z Has data issue: false hasContentIssue false

Comparison of Growth Morphology in Ge (001) Homoepitaxy Using Pulsed Laser Deposition and MBE

Published online by Cambridge University Press:  11 February 2011

John P. Leonard
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Byungha Shin
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
James W. McCamy
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Michael J. Aziz
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Get access

Abstract

Differences in the homoepitaxy of Ge(001) are explored using a dual MBE/PLD deposition system. With identical substrate preparation, temperature calibration, background pressure and analysis, the system provides a unique comparison of the processes arising only from kinetic differences in the flux and at the surface. All films show mounded growth. At substrate temperatures below 200°C, PLD films are smoother than MBE films, whereas they are similar at higher temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Franghiadakis, Y., Fotakis, C., Tzanetakis, P., Appl. Phys. A 68, pp. 391 (1999).Google Scholar
2. Markov, V.A., Pchelyakov, O.P., Sokolov, L.V., Stenin, S.I., Stoyanov, S., Surf. Sci. 250, 229 (1991)Google Scholar
3. Chason, E., Tsao, J.Y., Horn, K.M., Picraux, S.T., Atwater, H.A., J. Vac. Sci. Technol. A 8, 2507 (1990).Google Scholar
4. Greene, J.E., Lee, N.E., Nucl. Instr. Meth. B 121, 58 (1997).Google Scholar
5. Murty, M.V.R., Atwater, H.A., Surf. Sci. 374, 283 (1997).Google Scholar
6. Rabalais, J.W., Al-Bayati, A.H., Boyd, K.J., Marton, D., Kulik, J., Zhang, Z., Chu, W.K., Phys. Rev. B 53, 10781 (1996).Google Scholar
7. Taylor, M.E., Atwater, H.A., Murty, M.V.R., Thin Solid Films 324, 85 (1998).Google Scholar
8. Taylor, M.E., Atwater, H.A., Appl. Surf. Sci. 127–129, 159 (1998).Google Scholar
9. Mayr, S.G., Moske, M., Samwer, K., Taylor, M.E., Atwater, H.A., Appl. Phys. Lett. 75, 4091 (1999).Google Scholar
10. Combe, N., Jensen, P., Phys. Rev. B 57, 15553 (1998)Google Scholar
11. Jenniches, H., Klaua, M., Hoche, H., Kirschner, J., Appl. Phys. Lett. 69, 3339 (1996).Google Scholar
12. Eaglesham, D.J., J. Appl. Phys. 77, 3597 (1995).Google Scholar
13. Aarts, J., Hoeven, A.J., Larsen, P.K., J. Vac. Sci. Technol. A 6, 607 (1988).Google Scholar
14. Xie, M.H., Zhang, J., Mokler, S.M., Fernandez, J., Joyce, B.A., Surf. Sci., 320, 259 (1994).Google Scholar
15. Zhang, X.J., Xue, G., Agarwal, A., Tsu, R., Hasan, M.A., Greene, J.E., Rockett, A., J. Vac. Sci. Technol. A 11, 2553 (1993)Google Scholar
16. Van Nostrand, J.E., Chey, S.J., Hasan, M.A., Cahill, D.G., Greene, J.E., Phys. Rev. Lett. 74, 1127 (1995).Google Scholar
17. Chan, L.H., Altman, E.I., Liang, Y., J. Vac. Sci. Technol. A 19, 976 (2001).Google Scholar
18. Berrie, C.L., Leone, S.R., J. Cryst. Growth 216, 159 (2000).Google Scholar
19. Schelling, C., Springholz, G., Schaffler, F., Thin Solid Films 369, 1 (2000).Google Scholar
20. Van Nostrand, J.E., Chey, S.J., Cahill, D.G., J. Vac. Sci. Technol. B 13, 1816 (1995).Google Scholar
21. Lee, N.E., Cahill, D.G., Greene, J.E., Phys. Rev. B 53, 7876 (1996).Google Scholar