Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T17:01:45.040Z Has data issue: false hasContentIssue false

Consecutive Selective Chemical Vapor Deposition of Copper and Aluminum from Organometallic Precursors

Published online by Cambridge University Press:  22 February 2011

Stephen M. Fine
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Boulevard, Allentown, PA 18195
Paul N. Dyer
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Boulevard, Allentown, PA 18195
John A. T. Norman
Affiliation:
Schumacher Co., 1969 Palomar Oaks Way, Carlsbad, CA 92009.
Get access

Abstract

For the next generation of integrated microcircuits, there exists a need in the electronics industry for high conductivity, electromigration resistant metallization that can be deposited selectivity by chemical vapor deposition techniques. This paper describes a new process for depositing copper/aluminum metallization selectively onto diffusion barrier surfaces in two consecutive steps. First copper is selectively deposited by OMCVD ontoa patterned diffusion barrier surface using a Cu(I)(hfac)(olefin) precursor. Selective copper deposition onto tungsten or titanium nitride is achieved at 150°C and 100 mtorr. Aluminum is then selectively deposited onto copper using trimethylaminealane as the OMCVDprecursor. Trimethylaminealane gives good selectivity for aluminum deposition onto coppersurfaces over a temperature range of 100–120°C without the use of a surface activating agent. A small amount of copper diffuses into the as deposited aluminum layer atthe low deposition temperature. Complete diffusion of copper into aluminum is achieved by a rapid thermal anneal at a higher temperature. The selectivity of aluminum deposition onto copper surfaces is far superior to that observed for aluminum deposition onto other metal surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheung, K. P., Case, C. J., Liu, R., Schutz, R. J., Wagner, R. S., Kwakman, L. F. Tz., Huibregtse, D., Piekaar, H. W., and Granneman, E. H. A. in Proceedings of the International VLSI Multilevel Interconnection Conference. (IEEE, 1990), p. 303.Google Scholar
2. Kwakman, L. F. Tz., Huibregtse, D., Piekaar, H. W., and Granneman, E. H. A., Cheung, K. P., Case, C. J., Lai, Y., Liu, R., Schutz, R. J., Wagner, R. S., in Proceedings of the International VLSI Multilevel Interconnection Conference. (IEEE, 1990), p. 282.Google Scholar
3. Houlding, V. H., Maxwell, H. Jr, Crochiere, S. M., Farrington, D. L., Rai, R. S., and Tartaglia, J. M., presented at the 1992 MRS Spriong Meeting, San Francisco, CA (in press).Google Scholar
4. Norman, J. A. T. and Dyer, P. N., U.S. Patent No. 5 098 516 (24 March 1992).Google Scholar
5. Kovar, R. A., Callaway, J. O., Inorg. Synth. 17, 36 (1977).Google Scholar
6. Fine, S. M., Dyer, P. N., Norman, J. A. T., Muratore, B. A., Iampietro, R. L. in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L. V., Jensen, K. F., Dubois, L. H., and Gross, M. E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA, 1990) pp. 415420.Google Scholar
7. Dubois, L. H., Zagarski, B. R., Kao, C-T., and Nuzzo, R. G., Surf. Sci. 236, 77 (1990)Google Scholar
8. Norman, J. A. T. and Muratore, B. A., U.S. Patent No. 5 085 731 (4 February 1992). Cu(hfac)(tmvs) is marketed by Schumacher Co. as Cupraselec™Google Scholar