Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T22:28:10.214Z Has data issue: false hasContentIssue false

Controlling the Concentration and Position of Nitrogen in Ultrathin Oxynitride Films Formed by Using Oxygen and Nitrogen Radicals

Published online by Cambridge University Press:  10 February 2011

K. Watanabe
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, JAPAN, watanabe@lbr.cl.nec.co.jp
M. Togo
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198, JAPAN
T. Tatsumi
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, JAPAN, watanabe@lbr.cl.nec.co.jp
Get access

Abstract

The formation of oxynitride films less than 2.0 nm by using oxygen and nitrogen radicals produced by an electron cyclotron resonance plasma in an ultrahigh-vacuum system has been studied. The nitrogen concentration of the films was evaluated by x-ray photoelectron spectroscopy, and the position of the N in the films was evaluated by secondary ion mass spectroscopy. The interface roughness was also investigated by using atomic force microscopy. We found that the N concentration can be controlled at values up to 22.5%, and that although the interface roughness tends to increase with increasing N concentration, supplying oxygen and nitrogen radicals simultaneously decreases the roughness of the film and increases its nitrogen concentration (N: 18.2%, RMS: 0.12 nm). We also found that the nitrogen profile can be controlled by using different processing sequences. Radical oxynitridation should thus be very useful for making ultrathin gate-insulator films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hori, T., Iwasaki, H., and Tsuji, K., IEEE Trans. Electron Devices 36 (1989) 340.Google Scholar
2.Sutherland, D. G. J., Akatsu, H., Copel, M., Himpsel, F. J., Callcott, T. A., Carlisle, J. A., Ederer, D. L., Jia, J. J, Jimenez, I., Perera, R., Shuh, D. K., Terminello, L. J., and Tong, W. M., J. Appl. Phys. 78 (1995) 6761.Google Scholar
3.Hegde, R. I., Tobin, P. J., Reid, K. G., Maiti, B., and Ajuria, S. A., Appl. Phys. Lett. 66 (1995) 2882.Google Scholar
4.Green, M. L., Brasen, D., Evans-Lutterodt, K. W., Feldman, L. C., Krisch, K., Lennard, W., Tang, H. T., Manchanda, L., and Tang, M. T., Appl. Phys. Lett. 65 (1994) 848.Google Scholar
5.Gusev, E. P., Lu, H. C., Garfunkel, E., Gustanfsson, T., Green, M. L., Brasen, D., and Lennard, W. N., J. Appl. Phys. 84 (1998) 2980.Google Scholar
6.Hori, T., IEEE Trans. Electron Devices 37 (1990) 2058.Google Scholar
7.Song, S. C., Lee, C. H., Luan, H. F., Kwong, D. L., Gardner, M., Fulford, J., Allen, M., Bloom, J., and Evans, R., Mat. Res. Soc. Symp. Proc. 567 (1999) 65.Google Scholar
8.Nagamine, M., Itoh, H., Satake, H., and Toriumi, A., IEDM 98 (1998) 593.Google Scholar
9.Watanabe, K., Kimura, S., and Tatsumi, T., MRS 1999 Spring Meeting Abstract (1999) 268.Google Scholar
10.Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., and Kawanabe, I., IEEE Trans. Electron Devices 39 (1992) 537.Google Scholar
11.Wanger, C. D., Rigges, W. M., Davis, L. E., Moulder, J. F., and Muilenburg, G.E., Handbook of x-ray Photoelectron Spectroscopy, (1979) 188.Google Scholar