Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T18:37:09.425Z Has data issue: false hasContentIssue false

A Correlation Law for Steady State Creep and Stress Relaxation Tests on the Al-Al2Cu Composite

Published online by Cambridge University Press:  15 February 2011

M. Ignat
Affiliation:
Institut National Polytechnique de Grenoble - Laboratoire de Thermodynamique et Physico-ChimieMétallurgiques(L.A. 29) - E.N.S.E.E.G.Domaine Universitaire B.P.4438401 Saint Martin d'Héres (France)
R. Bonnet
Affiliation:
Institut National Polytechnique de Grenoble - Laboratoire de Thermodynamique et Physico-ChimieMétallurgiques(L.A. 29) - E.N.S.E.E.G.Domaine Universitaire B.P.4438401 Saint Martin d'Héres (France)
F. Durand
Affiliation:
Institut National Polytechnique de Grenoble - Laboratoire de Thermodynamique et Physico-ChimieMétallurgiques(L.A. 29) - E.N.S.E.E.G.Domaine Universitaire B.P.4438401 Saint Martin d'Héres (France)
Get access

Abstract

Deformation by creep or by stress-relaxation involve similar thermally activated phenomena. In particular our microstructural observations on the Al-Al2Cu lamellar composite illustrated the importance of the interphase accommodation mechanisms, specially movements of linear defects at the phase boundaries.

Our experimental results have shown that the asymptotic stress measured in stress-relaxation tests takes the same value as the threshold stress limiting the steady state creep domain. From this finding we develop a simple Bingham rheological model in which a temperature dependent threshold stress is combined with a generalized Dorn viscosity law. The model correlates satisfactorily the results of both steady state creep tests and the results of stress-relaxation tests.

The calculated activation energy and stress exponent are compared with the values deduced from physical models of deformation accommodation through grain boundary sliding. The preexponential factor of the viscosity law is discussed with reference to its dependence on the dislocation substructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Ignat, M. and Durand, F., Phys. Stat. Sol. (a), 51 (1979) p. 567 Google Scholar
(2) Ignat, M., Ann. Chim. Fr., 6 (1981) p. 91.Google Scholar
(3) Ignat, M., Proulx, D., Bonnet, R. and Durand, F., Acta Met., 29 (1981) p. 1607.Google Scholar
(4) Ignat, M., Bonnet, R., Caillard, D., Martin, J.L., Phys. Stat. Sol. (a), 49 (1978) p. 675.Google Scholar
(5) Ignat, M. and Caillard, D., In-Situ Composites, M.R.S. Boston, 16–17 november 1981.Google Scholar
(6) Mukherjee, A.K., Bird, J.E. and Dorn, J.E., Trans. ASM, Vol. 62 (1969) p. 155.Google Scholar
(7) Saporta, G., Méthodes statistiques, Institut Français du Pétrole, Paris 1978.Google Scholar
(8) Dubois, J.D., ACPN Program, LTPCM, Grenoble 1981.Google Scholar
(9) Williams, K.R. and Wilshire, B., Met. Soc. J., 7 (1973) p. 176.Google Scholar
(10) Sidey, D., Met. Trans., 7A (1976) p. 1785.Google Scholar
(11) Ho, E., Weatherly, W.C., Acta Met., 23 (1975) p. 1451.CrossRefGoogle Scholar
(12) Brunner, M. and Grant, N.J., Trans. AIME, 215 (1959) p. 48.Google Scholar
(13) Crossman, F.W. and Ashby, M.F., Acta Met., Vol. 23 (1975) p. 851.Google Scholar
(14) Spingarn, J.R. and Nix, W.D., Acta Met. 26 (1978) p. 1389.Google Scholar
(15) Mukherjee, A.K., Mat. Sc. Eng. 8 (1971) p. 83.Google Scholar
(16) Burton, B., Mat. Sc. Eng. 10 (1972) p. 9.Google Scholar
(17) Gifkins, R.C., Met. Trans. 7A (1976) p. 1225.Google Scholar
(18) Spingarn, J.R. and Nix, W.D., Acta Met. 27 (1979) p. 171.Google Scholar