Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T11:26:16.743Z Has data issue: false hasContentIssue false

Correlations Between Electrical Properties and Solid-State Reactions in Co/N-GaAs Contacts: A Bulk and Thin-Film Study

Published online by Cambridge University Press:  25 February 2011

F.-Y. Shiau
Affiliation:
Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadison, WI 53706
Y. A. Chang
Affiliation:
Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadison, WI 53706
Get access

Abstract

A fundamental and comprehensive approach has been taken to study Co//GaAs interfacial reactions, using phase diagram determination, bulk and thin-film diffusion couple studies, and electrical characterization. Phase formation sequences and interfacial morphologies are found to be similar in bulk and thin-film couples. Thermodynamic and kinetic analyses are used to rationalize the contact formations. The electrical properties of the contacts are correlated to the phase formation sequences and phase diagram information.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lince, J. R., Tsai, C. T., and Williams, R. S., J. Mater. Res., 1, 537 (1986).Google Scholar
2. Beyers, R., Kim, K. B., and Sinclair, R., J. Appl. Phys., 61, 2195 (1987).Google Scholar
3. Sands, T., J. Metals, 38, 31 (1986).Google Scholar
4. Lin, J.-C., Hsieh, K.-C., Schulz, K. J. and Chang, Y. A., J. Mater. Res., 3, 148 (1988).Google Scholar
5. Shiau, F. Y., Zuo, Y., Lin, J.-C., Zheng, X.-Y., and Chang, Y. A., Metallk, Z., in print (1989).Google Scholar
6. Shiau, F. Y., Zuo, Y., Zheng, X.-Y., Lin, J.-C., and Chang, Y. A., in MRS Symposium Proceedings on Adhesion in Solids, (Eds.: Mattox, D. M., Baglin, J. E. E., Gottschall, R. J., and Batich, C. D.), 119, Materials Research Society, Pittsburgh, PA (1988), p. 171.Google Scholar
7. Genut, M. and Eizenberg, M., Appl. Phys. Lett. 50, 1358 (1987).Google Scholar
8. Palmstrom, C. J., Chang, C. C., Yu, A. J., Galvin, G. J., and Mayer, J. W., J. Appl. Phys. 62, 3755 (1987).CrossRefGoogle Scholar
9. Lin, J.-C., Schulz, K. J., Hsieh, K.-C. and Chang, Y. A., in High Temperature Materials Chemistry IV (Eds.: Munir, Z. A., Cubicciotti, D. C. and Tagawa, H.), the Electrochemical Soc., Inc., Princeton, NJ (1988) p. 476.Google Scholar
10. Clark, J. B., Trans. Metall. Soc. AIME, 227, 1250 (1963).Google Scholar
11. Shiau, F. Y., Chang, Y. A., and Chen, L. J., J. Electron. Mater. 17, 433 (1988).Google Scholar
12. Freeouf, J. L., Jackson, T. N., Laux, S. E., and Woodall, J. M., J. Vac. Sci. Technol. 21, 570 (1982).Google Scholar
13. Ohdomari, I. and Tu, K. N., J. Appl. Phys. 51, 3735 (1980).Google Scholar
14. Fistul, V. I. and Agaev, K. D., Fiz. Tverd. Tela, 7, 3681 (1964).Google Scholar
15. Sze, S. M., Physics of Semiconductor Devices, 2nd ed.,Wiley, New York, (1981) p. 20.Google Scholar