Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T10:10:58.496Z Has data issue: false hasContentIssue false

Debye Temperature at the Fivefold- and Threefold-Symmetry Surface of the Al-Pd-Mn Quasicrystal.

Published online by Cambridge University Press:  01 February 2011

R. Lüscher
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland.
T. Flückiger
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland.
M. Erbudak
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland.
A. R. Kortan
Affiliation:
Guest Scientist.
Get access

Abstract

Specular-beam intensity profiles are measured in low-energy electron diffraction as a function of temperature for the fivefold- and threefold-symmetry surfaces of the icosahedral quasicrystal Al-Pd-Mn. The resulting shifts of the Bragg-peaks to lower energies are accounted for mainly by a lattice expansion perpendicular to the surface and allow us to determine the thermal expansion coefficient of atomic layers to be (24.5 ± 2.0) × 10−6 K−1 for both surfaces. As a result of several measurements, a surface Debye temperature of 298 ± 7 K is found for the pentagonal and 301 ± 10 K for the threefold-symmetry surface. This similarity implies comparable bonding forces for the atoms at these surfaces. Additionally, the derived thermal expansion coefficient supports a layer-based structural model for both surfaces investigated here.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shen, Z. et al., Surf. Sci. 450, 111 (2000).Google Scholar
2. Papadopolos, Z. et al., Phys. Rev. B 66, 184207 (2002).Google Scholar
3. Rouxel, D., Cai, T.-H., Jenks, C. J., Lograsso, T. A., Ross, A., Thiel, P. A., Surf. Sci. 461, L521–L527 (2000).Google Scholar
4. Papadopolos, Z. (private communication).Google Scholar
5. Zangwill, A., Physics at surfaces (Cambridge University Press, Cambridge, 1988), pp. 117.Google Scholar
6. Woodruff, D. P. and Seah, M. P., Phys. Stat. Sol. (a) 1, 429 (1970).Google Scholar
7. Viljoen, P. E., Wessels, B. J., Berning, G. L. P., and Rouz, J. P., J. Vac. Sci. Technol. 20, 204 (1982).Google Scholar
8. Jaric, M. V. and Nelson, D. R., Phys. Rev. B. 37 (1988) 4458.Google Scholar
9. Lüscher, R., Flückiger, T., Erbudak, M., and Kortan, A. R., Surf. Sci. 532–535, 812 (2003).Google Scholar
10. Zhang, G. W., Stadnik, Z. M., Tsai, A.-P., and Inoue, A., Phys. Lett. A 186, 345 (1994).Google Scholar
11. Gierer, M. et al., Phys. Rev. B 57, 7628 (1998).Google Scholar
12. Swenson, C. A. et al., Phys. Rev. B 65, 184206 (2002) and references therein.Google Scholar
13. see, e.g., Wilson, J. M., and Bastow, T. J., Surf. Sci. 26, 461 (1971);Google Scholar
Pohl, K., Cho, J.-H., Terakura, K., Scheffler, M., and Plummer, E. W., Phys. Rev. Lett. 80, 2853 (1998).Google Scholar
14. Colella, R., Zhang, Y., Sutter, J. P., Ehrlich, S. N., and Kycia, S. W., Phys. Rev. B 63, 014202 (2000).Google Scholar
15. Kluge, F., Ebert, Ph., Grushko, B., and Urban, K., Mat. Sci. Eng. A 294–296, 874 (2000).Google Scholar
16. Lüscher, R., Flückiger, T., Erbudak, M., and Kortan, A. R., Phys. Rev. B 68 (in print).Google Scholar