Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T22:10:46.102Z Has data issue: false hasContentIssue false

Defect Accumulation and Recovery in Ion-Implanted 6H-SiC

Published online by Cambridge University Press:  01 February 2011

W. Jiang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland,WA 99352, U.S.A.
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland,WA 99352, U.S.A.
C. M. Wangxya
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland,WA 99352, U.S.A.
Get access

Abstract

Single crystal wafers of <0001>-oriented 6H-SiC were irradiated at different temperatures using a variety of ion species. The disorder on both the Si and C sublattices has been studied in situ using a combination of ion beam analyses in multiaxial channeling geometry. The fraction of the irradiation-induced defects surviving simultaneous recovery processes decreases with decreasing ion mass and with increasing irradiation temperature. Some of the Si and C defects are well aligned with the <0001> axis and the rate of C disordering is higher than that of Si disordering. Three recovery stages in Au2+-irradiated 6H-SiC have been identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Raynaud, C., J. Non-Cryst. Solids 280, 1 (2001)Google Scholar
2. Fenici, P., Rebelo, A. J. F., Jones, R. H., Kohyama, A., and Snead, L. L., J. Nucl. Mater. 258-263, 215 (1998)Google Scholar
3. Kim, B. G., Y, Choi, Lee, J. W., Lee, Y. W., Sohn, D. S., and Kim, G. M., J. Nucl. Mater. 281, 163 (2000)Google Scholar
4. Weber, W. J., Wang, L. M., Yu, N., and Hess, N. J., Mater. Sci. and Eng. A 253, 62 (1998)Google Scholar
5. Weber, W. J., Nucl. Instr. and Meth. B 166&167, 98 (2000)Google Scholar
6. Jiang, W. and Weber, W. J., Phys. Rev. B 64, 125206 (2001)Google Scholar
7. Gao, F., Bylaska, E. J., Weber, W. J., and Corrales, L. R., Phys. Rev. B 64, 25208 (2001)Google Scholar
8. Devanathan, R., Weber, W. J., and Gao, F., J. Appl. Phys. 90, 2303 (2001)Google Scholar
9. Jiang, W., Thevuthasan, S., Weber, W. J., and Grötzschel, R., Nucl. Instr. and Meth. B 161-163, 501 (2000)Google Scholar
10. Jiang, W., Weber, W. J., Thevuthasan, S., and Shutthanandan, V., J. Nucl. Mater. 289, 96 (2001)Google Scholar
11. Ziegler, J. F., Biearsack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.Google Scholar
12. Jiang, W., Weber, W. J., Thevuthasan, S., and Grötzschel, R., Nucl. Instr. and Meth. B 166&167, 374 (2000)Google Scholar
13. Jiang, W., Weber, W. J., Thevuthasan, S., and Shutthanandan, V., Nucl. Instr. and Meth. B (2002), in press.Google Scholar
14. Weber, W. J., Jiang, W., Gao, F., and Devanathan, R., Nucl. Instr. and Meth. B (2002), in press.Google Scholar
15. Zhang, Y., Weber, W. J., Jiang, W., Hallén, A., and Possnert, G., J. Appl. Phys. (2002), submitted.Google Scholar
16. Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997)Google Scholar