Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-04T18:46:11.888Z Has data issue: false hasContentIssue false

Defect Reactions and Atomic Diffusion in Silicon

Published online by Cambridge University Press:  28 February 2011

Sokrates T. Pantelides*
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Atomic diffusion is generally mediated by intrinsic defects such as vacancies and self-interstitials. In this paper we give a critical review of the relevant properties of intrinsic defects in Si as they have been determined by experiments and recent theoretical calculations. We then review the role of these defects in mediating self-diffusion and dopant impurity diffusion both under equilibrium and non-equilibrium conditions. A systematic and internally consistent picture emerges, but many processes, such as oxidation-modified and nitridation-modified diffusion require more systematic data for detailed understanding.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See e.g. S. Hu, M., in Atomic Diffusion in Semiconductors, edited by Shaw, D., (Plenum, London and New York, 1973), p. 217; W. Frank, U. Goesele, H. Mehrer, and A. Seeger, in Diffusion in Crystalline Solids, edited by G. E. Murch and A. S. Nowick, (Academic, Orlando, Fla, 1984), p. 64.CrossRefGoogle Scholar
2.For a recent review and references to the original papers see Watkins, G. D., in Deep Centers in Semiconductors, edited by Pantelides, S. T., (Gordon and Breach, New York, 1986), p. 147.Google Scholar
3. Baraff, G. A., Kane, E. O. and Schluter, M., Phys. Rev. Lett. 43, 956 (1979).CrossRefGoogle Scholar
4. Watkins, G. D. and Troxell, J. R., Phys. Rev. Lett. 44, 593 (1980).CrossRefGoogle Scholar
5.For a review, see Watkins, G. D., in Lattice Defects in Semiconductors 1974, (Inst. of Phys. Conf. Ser. No. 23, London, 1975), p. 1.Google Scholar
6. Bourgoin, J. and Corbett, J. W., Phys. Lett. A38, 132 (1972).Google Scholar
7.For a brief review see Pantelides, S. T., Ivanov, I., Scheffler, M., and Vigneron, J. P., Physica 116B, 18, (1983); the first explicit demonstration of athermal migration by interstitial Si was given in terms of total energy calculations by Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. Lett. 52, 1129 (1984).Google Scholar
8. Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S. T., Phys. Rev. Lett. 52, 1814 (1984); for updated values of formation energies of vacancies and self-interstitials see Ref. 9.CrossRefGoogle Scholar
9. Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S. T., Phys. Rev. Lett. 54, 360 (1985).CrossRefGoogle Scholar
10. Bar-Yam, Y. and Joannopoulos, J. D., J. Electron. Mater. 14a, 261 (1985).Google Scholar
11. Baraff, G. A., Schluter, M. and Allan, G., Phys. Rev. Lett. 50, 739 (1983).CrossRefGoogle Scholar
12. Pantelides, S. T., Oshiyama, A., Car, R. and Kelly, P. J., Phys. Rev. B 30, 2260 (1984).CrossRefGoogle Scholar
13.See compilation of data in Frank et al., Ref. 1.Google Scholar
14. Watkins, G. D. and Corbett, J. W., Phys. Rev. 134A, 1359 (1964).CrossRefGoogle Scholar
15. Fairfield, J. M. and Masters, B. J., J. Appl. Phys. 38, 3148 (1967).CrossRefGoogle Scholar
16. Swalin, R. A., J. Phys. Chem. Sol. 18, 290 (1961).CrossRefGoogle Scholar
17. Phillips, J. C. and Vechten, J. A. Van, Phys. Rev. Lett. 30, 220 (1973).CrossRefGoogle Scholar
18. Elstner, L. and Kamprath, W., Phys. Status Solidi 22, 541 (1967).CrossRefGoogle Scholar
19. Vechten, J. A. Van, Phys. Rev. B 12, 1247 (1975).CrossRefGoogle Scholar
20. Vechten, Van has summarized his arguments in an appendix of a recent paper, Phys. Rev. B 33, 2674 (1986).Google Scholar
21.See the review in Frank et al., Ref. 1.Google Scholar
22. Blount, E. I., J. Appl. Phys. 30, 1218 (1959).CrossRefGoogle Scholar
23. Seeger, A., Foell, H., and Frank, W., in Radiation Effects in Semiconductors 1976, (Inst. of Phys. Conf. Ser. No. 31, London 1977), p. 12.Google Scholar
24. Morehead, F., Stolwick, N. A., Meyberg, W., and Goesele, U., Appl. Phys. Lett. 42, 690 (1983); N. A. Stolwyck, B. Schuster, J. Hoelzl, H. Mehrer, and W. Frank, Physica 116B, 335 (1983).CrossRefGoogle Scholar
25. Hu, S. M., J. Appl. Phys. 45, 1567 (1974).CrossRefGoogle Scholar
26. Dannefaer, S., Mascher, P. and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).CrossRefGoogle Scholar
27. Pandey, K. C., Phys. Rev. Lett. 47, 1913 (1981).CrossRefGoogle Scholar
28. Stillinger, F. H. and Weber, T., Phys. Rev. B 31, 5262 (1985); R. Biswas and D. R. Hamann, Phys. Rev. Lett. 55, 2001 (1985); J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).CrossRefGoogle Scholar
29. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
30. Chantre, A., Kechouane, M. and Bois, D., Physica 116B, 547 (1983).Google Scholar
31. Chantre, A., Appl. Phys. Lett. 46, 263 (1985).CrossRefGoogle Scholar
32. Johnson, R. P., Phys. Rev. 56, 814 (1939).CrossRefGoogle Scholar
33. Hu, S. M., Fahey, P., and Dutton, R. W., J. Appl. Phys. 54, 6912 (1983).CrossRefGoogle Scholar
34. Fair, R. B. and Tsai, C. C., J. Electrochem. Soc. 124, 1107 (1977); M. Yoshida, J. AppI. Phys. 48, 2169 (1977).CrossRefGoogle Scholar
35. Antoniadis, D. A. and Moskowitz, I., J. Appl. Phys. 53, 6788 (1982).CrossRefGoogle Scholar
36. Harris, R. M. and Antoniadis, D. A., Appl. Phys. Lett. 43, 937 (1983).CrossRefGoogle Scholar
37. Nishi, K. and Antoniadis, D. A., J. Appl. Phys. 59, 1117 (1986).CrossRefGoogle Scholar
38. Fahey, P., Dutton, R. W. and Hu, S. M., Appl. Phys. Lett. 44, 777 (1984).CrossRefGoogle Scholar
39. Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R. W., Appl. Phys. Lett. 46, 784 (1985).CrossRefGoogle Scholar
40. Mathiot, D. and Pfister, J. C., J. Appl. Phys. 55, 3518 (1984).CrossRefGoogle Scholar
41. Mathiot, D. and Pfister, J. C., Appl. Phys. Lett. 47, 962 (1985).CrossRefGoogle Scholar
42. Fair, R. B., J. Appl. Phys. 51, 5828 (1980); J. Electron. Mater. 14a, 173 (1985).CrossRefGoogle Scholar
43. Tan, T. H. and Goesele, U., Appl. Phys. Lett. 40, 616 (1982); U. Goesele and T. H. Tan, in Defects in Semiconductors II, edited by J. W. Corbett and S. Mahajan, (North-Holland, New York, 1983), p. 45; also in Impurity Diffusion and Gettering in Silicon, edited by R. B. Fair, C. W. Pearce and J. Washburn, (MRS Symposium Proceedings, Pittsburg, 1985), p. 105.CrossRefGoogle Scholar
44. Morehead, F. F. and Lever, R. F., Appl. Phys. Lett. 48, 151 (1986).CrossRefGoogle Scholar
45. Francis, R. and Dobson, P. S., J. Appl. Phys. 50, 280 (1979).CrossRefGoogle Scholar
46. Antoniadis, D. A., Lin, A. M. and Dutton, R. W, Appl. Phys. Lett. 33, 1030 (1978).CrossRefGoogle Scholar
47. Lin, A.M., Antoniadis, D. A., and Dutton, R. W., J. Electrochem. Soc. 128, 131 (1981).Google Scholar
48. Bronner, G. B. and Plummer, J. D., Appl. Phys. Lett. 46, 510 (1985).CrossRefGoogle Scholar
49. Bronner, G. B., PhD thesis, Stanford University, 1985 (unpublished).Google Scholar
50. Antoniadis, D. A., J. Electrochem. Soc. 129, 1093 (1982).CrossRefGoogle Scholar
51. Bronner, G. B. and Plummer, J. D., in Impurity Diffusion and Gettering in Silicon, Ref. 43, p. 49.Google Scholar