Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T11:31:40.106Z Has data issue: false hasContentIssue false

Degradation of InGaN/AlGaN LED on Sapphire Substrate Grown by MOCVD

Published online by Cambridge University Press:  10 February 2011

T. Egawa
Affiliation:
Research Center for Micro-Structure Devices, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
H. Ishikawa
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Jimbo
Affiliation:
Research Center for Micro-Structure Devices, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
M. Umeno
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

We report an optical degradation of an InGaN/AIGaN double-heterostructure light-emitting diode (LED) on a sapphire substrate grown by metalorganic chemical vapor deposition. The InGaN/AIGaN LED exhibited an optical output power of 0.17 mW, external quantum efficiency of 0.2 %, and the peak emitting spectrum at 437 nm with full width at half-maximum of 63 nm under 30 mA dc operation at 300 K. The InGaN/AIGaN LED showed the optical degradation under high injected current density. Electroluminescence, electron-beam induced current and cathodoluminescence observations show that the degraded InGaN/AIGaN LED exhibits formation and propagation of dark spots and a crescent-shaped dark patch, which act as nonradiative recombination centers. The values of degradation rate under injected current density of 0.1 kA/cm2 were determined to be 1.1 × 10-3, 1.9 × 10-3 and 3.9 × 10-3 h-1 at ambient temperatures of 30, 50 and 80°C, respectively. The activation energy of degradation was also determined to be 0.23 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwase, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwase, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H., IEEE Lasers & Electro-Optics Society, Boston, 1996, PDP1.1.Google Scholar
3. Egawa, T., Hasegawa, Y., Jimbo, T. and Umeno, M., Appl. Phys. Lett. 67, 2995 (1995).Google Scholar
4. Guha, S., DePuydt, J. M., Haase, M. A., Qiu, J. and Cheng, H., Appl. Phys. Lett. 63, 3107 (1993).Google Scholar
5. Hua, G. C., Otsuka, N., Grillo, D. C., Fan, Y., Han, J., Ringle, M. D., Gunshor, R. L., Hovinen, M. and Nurmikko, A. V., Appl. Phys. Lett. 65, 1331 (1994).Google Scholar
6. Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
7. Osinski, M., Helms, C. J., Berg, N., Barton, D. L. and Phillips, B. S., Proc. Mat. Res. Soc. 395, 931 (1996).Google Scholar
8. Yamakoshi, S., Abe, M., Wada, O., Komiya, S. and Sakurai, T., IEEE J. Quantum Electron. QE–17, 167 (1981).Google Scholar
9. Yamakoshi, S., Hasegawa, O., Hamaguchi, H., Abe, M. and Yamaoka, T., Appl. Phys. Lett. 31, 627 (1977).Google Scholar