Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T02:30:47.789Z Has data issue: false hasContentIssue false

Densification and Crystallization of Amorphous SiO2 by Neutral Beam Bombardment

Published online by Cambridge University Press:  22 February 2011

Tatsumi Mizutani*
Affiliation:
Central Research Laboratory, Hitachi Ltd. Kokubunji, Tokyo 185, Japan
Get access

Abstract

Amorphous SiO2 films formed by thermal oxidation of silicon have been bombarded by low-energy (350 — 400 eV) ion beam and neutral beam of inert atoms. The modified SiO2 layers have been characterized by Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS) and reflection high energy electron diffraction (RHEED). It is shown that neutral beam bombardment does not cause preferential sputtering of oxygenfrom SiO2, whereas ion beam of the same energy causes significant preferential sputtering. For neutral bombardment, densification and crystallization of SiO2 have been observed. The formation of α-cristobalite and α-quartz from amorphous SiO2 has been observed for high dose bombardments (>1017neutrals/cm2). These densification and crystallization phenomena can be attributed to high temperature and high pressure local spot formation upon the incidence of energetic neutral atoms. For ion beam bombardments, these densification and crystallization phenomena have not been observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, T. and Yoshida, Y., Solid State Technol. 27, 263 (1985).Google Scholar
2. Ryden, K. H. and Norstrom, H., J. Electrochem. Soc. 134, 3113 (1987).Google Scholar
3. Mizutani, T. and Yunogami, T., Jpn. J. Appl. Phys. 29, 2220 (1990).Google Scholar
4. Mizutani, T. and Nishimatsu, S., J. Vac. Sci. Technol. A6, 1417 (1988).Google Scholar
5. Mizutani, T. and Nishimatsu, S., J. Vac. Sci. Technol. B7, 547 (1989).Google Scholar
6. Mizutani, T., Jpn. J. Appl. Phys. 30, L628 (1991).Google Scholar
7. Lang, B., Appl. Surf. Sci. 37, 63 (1989).Google Scholar
8. McMillan, P., Piriou, B., and Couty, R., J. Chem. Phys. 81, 4234 (1984).Google Scholar
9. Jorgensen, J. D., J. Appl. Phys. 49, 5473 (1978).Google Scholar
10. Hemley, R. J., Mao, H. K., Bell, P. M., and Mysen, B. O., Phys. Rev. Lett. 57, 747 (1986).Google Scholar
11. Velde, B. and Couty, R., J. Noncryst. Solids 94, 238 (1987).Google Scholar
12. Devine, R. A. B. and Arndt, J., Phys. Rev. B35, 9376 (1987).Google Scholar
13. Mackenzie, J. D., J. Amer. Cer. Soc. 46, 461 (1963).Google Scholar
14. Tsuneyuki, S., Tsukada, M., and Aoki, H., Phys. Rev. Lett. 61, 869 (1988).Google Scholar
15. Weissmantel, C., Bewilogua, K., Dietrich, D., Erler, H-J., Hinneberg, H-J., Klose, S., Nowck, W., and Reisse, G., Thin Solid Films 72, 19 (1980).Google Scholar
16. Seitz, F. and Koehler, J. S., in Solid State Phvsics Vol. 2. edited by Seitz, F. and Tumbull, D. (Academic Press, New York, 1956), p.305.Google Scholar
17. Kelly, R., in Ion Bonbardment Modification of Surfaces, edited by Auciello, O. and Kelly, R., (Elsevier, Amsterdam, 1984) p.27.Google Scholar