Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:17:38.255Z Has data issue: false hasContentIssue false

Dependence of Buried CoSi2 Resistivity on ION Implantation and Annealing Conditions1

Published online by Cambridge University Press:  28 February 2011

Fereydoon Namavar
Affiliation:
Spire Corporation, Bedford, MA 01730–2396
N. M. Kalkhoran
Affiliation:
Spire Corporation, Bedford, MA 01730–2396
J. M. Manke
Affiliation:
Spire Corporation, Bedford, MA 01730–2396
L. Luo
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM
J. T. McGinn
Affiliation:
David Sarnoff Research Center, Princeton, NJ
Get access

Abstract

We have investigated the dependence of electrical and material properties of buried CoSi2 layers on Co+ implantation and annealing conditions. The results indicated that the electrical resistivity and crystalline quality of the implanted buried CoSi2 layers depend strongly on the implantation temperature. CoSi2 layers with the lowest resistivity and best crystalline quality (Xmin as low as 3.6%) were obtained from samples implanted at 300°C-400°C. Implantation at higher temperatures (e.g., 580°C) produced cobalt disilicide layers with significantly higher electrical resistivity and a Xmin of about 10.7%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chadda, T.B.S. and Wolf, M., Recl. of the 10th IEEE Photovoltaic Specialists Conference, Palo Alto, 1973, p. 52.Google Scholar
2. Sater, B.L., Brandhorst, H.W. Jr, Riley, T.J., and Hart, R.E. Jr, Rec. of the 10 IEEE Photovoltaic Specialists Conference, Palo Alto, 1973, p. 188.Google Scholar
3. Goradia, C., Ziegman, R., and Sater, B.L., Rec. of the 12th IEEE Photovoltaic Specialists Conference, Baton Rouge, 1976, p. 781.Google Scholar
4. Goradia, C. and Goradia, M.G., Rec. of the 12th IEEE Photovoltaic Specialists Conference, Baton Rouge, 1976, p. 789.Google Scholar
5. Walker, G.H. and Heinbockel, J.H., NASA Conference Publication 2475, Space Photovoltaic Research and Technology Conference, Cleveland, 1986, p. 133.Google Scholar
6. Walker, G.H. and Heinbockel, J.H., Solar Cells, 22, 55 (1987).Google Scholar
7. Walker, G.H., 18th Intersociety Energy Conversion Engineering Conference, Orlando, 1983, p. 1194.Google Scholar
8. White, A.E., Short, K.T., Dynes, R.C., Garno, J.P., and Gibson, J.M., Mat. Res. Soc. Symp. Proc. 74, 481 (1987).Google Scholar
9. Maex, K., White, A.E., Short, K.T., Hsieh, Y.-F., and Hull, R., J. Appl. Phys. 68(11) 5641(1990).Google Scholar
10. Jebasinski, R., Mantl, S., Radermacher, K., Fichtner, P., Jager, W., and Buchal, Ch., Mat. Res. Soc. Symp. Proc. 201, 411 (1991).CrossRefGoogle Scholar
11. Tan, Z., Budnick, J.I., Sanchez, F.H., Tourillon, G., Namavar, F., and Hayden, H.C., Physical Review 40(9) 6368 (1989).CrossRefGoogle Scholar
12. Namavar, F., Cortesi, E., Pinizzotto, R.F., and Yang, H., Mat. Res. Soc. Symp. Proc. 157, 179 (1989).Google Scholar
13. Namavar, F., Cortesi, E., and Sioshansi, P., Mat. Res. Soc. Symp. Proc., 128, 623 (1989).Google Scholar