No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
Diamond-like carbon films were prepared by high intensity pulsed ion beam ablation of graphite targets. A 350 keV, 35 kA, 400 ns pulse width beam, consisting primarily of carbon ions and protons, was focused onto a graphite target at a fluence of 15-45 J/cm2. Films were deposited onto substrates positioned in an angular array from normal to the target to 90° off normal. Deposition rates up to 30 nm per pulse, corresponding to an instantaneous deposition rate greater than 1 mm/sec, have been observed. Electrical resistivities between 1 and 1000 ohm·cm were measured for these films. XRD scans showed that no crystalline structure developed in the films. SEM revealed that the bulk of the films contain material with feature sizes on the order of 100 nm, but micron size particles were deposited as well. Both Raman and electron energy loss spectroscopy indicated significant amounts of sp3 bonded carbon present in most of the films.