Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:48:01.075Z Has data issue: false hasContentIssue false

Development of Acidity on Sol-Gel Prepared TiO2-SiO2 Catalysts

Published online by Cambridge University Press:  21 February 2011

J.J. Calvino
Affiliation:
Universidad de Câdiz. Departamento de Ciencia de los Materiales, Ingenieriâ Metalûrgica y Quîmica Inorgânica. Apartado 40. Fax: 56834924. Puerto Real 11510. SPAIN.
M.A. Cauqui
Affiliation:
Universidad de Câdiz. Departamento de Ciencia de los Materiales, Ingenieriâ Metalûrgica y Quîmica Inorgânica. Apartado 40. Fax: 56834924. Puerto Real 11510. SPAIN.
J.M. Gatica
Affiliation:
Universidad de Câdiz. Departamento de Ciencia de los Materiales, Ingenieriâ Metalûrgica y Quîmica Inorgânica. Apartado 40. Fax: 56834924. Puerto Real 11510. SPAIN.
J.A. Perez
Affiliation:
Universidad de Câdiz. Departamento de Ciencia de los Materiales, Ingenieriâ Metalûrgica y Quîmica Inorgânica. Apartado 40. Fax: 56834924. Puerto Real 11510. SPAIN.
J.M. Rodriguez-Izquierdo
Affiliation:
Universidad de Câdiz. Departamento de Ciencia de los Materiales, Ingenieriâ Metalûrgica y Quîmica Inorgânica. Apartado 40. Fax: 56834924. Puerto Real 11510. SPAIN.
Get access

Abstract

Three different TiO2-SiO2 gels (Xerogel, Carbogel and Aerogel) are more active acid catalysts than other reference samples used here. As deduced from FTIR, XRD and XANES studies, the structural properties of these gels are quite different to each other, thus revealing the strong influence of the drying treatment. It is found that the degree of Si-O-Ti linking and the surface acidity follows the same trend (X 〉 C 〉 A). We conclude that supercritical drying at 600 K and 190 bars can induce Ti leaching followed by redeposition in the narrower pores of the gel. These effects modify both the textural and surface chemical properties of the resulting material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bond, G.C., Heterogeneous Catalysis. 2nd ed (Clarendon, Oxford. 1987).Google Scholar
2 Pajonk, G.M., Appl. Catal. 72, 217 (1991).Google Scholar
3 Cauqui, M.A. and Rodrfguez-Izquierdo, J.M., J. Non-Cryst. Solids 147 & 148, 724 (1992).Google Scholar
4 Cornell, G. and Dumesic, J.A., J. Catal. 102, 216 (1986).Google Scholar
5 Kung, H.H., Transition Metal Oxides. ( Elsevier Science Publishers, Amsterdam, 1989).Google Scholar
6 Figueras, F., Nohl, A., de Mourgues, L. and Trambouze, Y., Trans. Faraday Soc. 67, 1147 (1971).Google Scholar
7 Gregor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J. and Schultz, P., J. Non-Cryst. Solids 55, 27 (1983).Google Scholar
8 Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. Non-Cryst. Solids 121, 206 (1987).Google Scholar
9 Beghi, M., Chiurlo, P., Costa, L., Palladino, M. and Pirini, M.F., J. Non-Cryst. Solids 145, 175 (1992).Google Scholar
10 Gonzâlez-Oliver, C.J.R., James, P.F. and Rawson, H., J. Non-Cryst. Solids 48, 129 (1982).Google Scholar
11 Emili, M., Incoccia, L., Mobilio, S., Fagherazzi, G. and Guglielmi, M., J. Non-Cryst. Solids 74, 129 (1985).Google Scholar
12 Adamson, A.W., Physical Chemistry of Surfaces. 4th ed (Wiley, New York, 1982).Google Scholar
13 Komarmeni, S., Roy, R., Selvaraj, U., Malla, P.B. and Breval, E., J. Mater. Res. 8, 3163 (1993).Google Scholar
14 Woignier, T., Phalippou, J., Quinson, J.F., Pauthe, M. and Laveissiere, F., J. Non-Cryst. Solids 145, 25 (1992).Google Scholar
15 Wang, P., Emmerling, A., Tappert, W., Spormann, O. and Fricke, J., J. Appl. Cryst. 24, 777 (1991).Google Scholar
16 Matsuda, A., Kogure, T., Matsuno, Y., Katayama, S., Tsuno, T., Thoge, N. and Minami, T., J. Am. Ceram. Soc. 76, 2899 (1993).Google Scholar
17 Moses, J.M., Willey, R.J. and Rouanet, S., J. Non-Cryst. Solids, 145, 41 (1992).Google Scholar