Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T15:27:36.024Z Has data issue: false hasContentIssue false

Development of High Purity One Atm Ozone Source - Its Application to Ultrathin SiO2 Film Formation on Si Substrate

Published online by Cambridge University Press:  10 February 2011

Kunihiko Koike
Affiliation:
Iwatani International Corporation, 4-5-1 Katsube, Moriyama, Shiga, 524-0041, Japan, kkoike@iwatani.co.jp
Goichi Inoue
Affiliation:
Iwatani International Corporation, 4-5-1 Katsube, Moriyama, Shiga, 524-0041, Japan, kkoike@iwatani.co.jp
Shingo Ichimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Ken Nakamura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Akira Kurokawa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Hidehiko Nonaka
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Get access

Abstract

A high-concentration ozone generator operating at atmospheric pressure has been developed for fabrication of ultra thin silicon oxide films. The generator can supply atmospheric pressure of ozone jet with ozone concentration up to 80 vol%. The ozone jet is generated by desorbing ozone at nearbyn room temperature, which has been condensed on silica-gel by passing ozone/oxygen mixture gas from a commercial ozonizer at a low temperature (<-50°C); at the temperature ozone is more selectively adsorbed on silica-gel than oxygen. The high purity ozone jet with a concentration of 25 vol% at a pressure of 1 × 105 Pa had so large oxidation power that SiO2 film as thick as 3.3 nm grew on a Si surface after 60 min exposure at 375°C. The density of the film was equivalent to that of the film formed by a conventional thermal oxidation process, judging from etching rate with dilute HF solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kurokawa, A., Ichimura, S. and Moon, D. W., Mat. Res. Soc. Symp. Proc., 477, 359 (1997).10.1557/PROC-477-359Google Scholar
2 Kurokawa, A. Nakamura, K. and Ichimura, S., Mat. Res. Soc. Syrup. Proc., 513, 37 (1998).10.1557/PROC-513-37Google Scholar
3 Koike, K., Inoue, G., Suzuki, M., Saida, J. and Komatsu, I., J. Chem. Eng. Jpn., 31, 195 (1998).10.1252/jcej.31.195Google Scholar
4 Himpsel, F. J., McFeely, F. R., Taleblbrahimi, A., Yarmoff, J. A. and Hollinger, G., Phys. Rev., B38, 6084 (1988).10.1103/PhysRevB.38.6084Google Scholar
5 Mitchell, D. F., Clark, K. B., Bardwell, J. A., Lennard, W. N., Massoumi, G. R. and Mitchell, I. V., Surf. Interface Anal., 21, 44 (1994).10.1002/sia.740210107Google Scholar
6 Deal, B. E. and Grove, A. S., J. Appl. Phys., 36, 3770 (1965).10.1063/1.1713945Google Scholar
7 Nakamura, K., Ichimura, S., Kurokawa, A., Koike, K., Inoue, G. and Fukuda, T., J. Vac. Sci. Technol. (in press).Google Scholar