Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:46:45.150Z Has data issue: false hasContentIssue false

Diffusion-Limited Binary Reactions: a Hierarchy of Non-Classical Regimes

Published online by Cambridge University Press:  15 February 2011

Panos Argyrakis
Affiliation:
Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109and Department of Physics, University of Thessaloniki, GR-54006 Thessaloniki, Greece
Raoul Kopelman
Affiliation:
Departments of Chemistry and Physics, The University of Michigan, Ann Arbor, MI 48109
Katja Lindenberg
Affiliation:
Department of Chemistry and Institute for Nonlinear Science, University of California at San Diego, La Jolla, CA 92093-0340
Get access

Abstract

We discuss the various regimes of kinetic behavior of the densities of reactants for the A + B → 0 reaction from initial to asymptotic times. Scaling arguments and Monte Carlo simulations demonstrate an unexpectedly rich hierarchy of cross-overs among time exponents ir the decay law ρ ˜ t−α. For instance, in one dimension possible time domains include classical (α = 1), A + A-type (α = 1/2), Zeldovich (α = 1/4), asymptotic correlated (α = 3/4) and finally nonalgebraic (exponential) finite size regimes. Simulation and theory are consistent with respect to both exponefits and cross-over times for one and two dimensions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Argyrakis, P., Kopelman, R., and Lindenberg, K., in preparation.Google Scholar
2. Lindenberg, K., West, B. J., and Kopelman, R., Phys. Rev. Lett. 60, 1777 (1988).Google Scholar
3. Lindenberg, K., West, B. J., and Kopelman, R., Phys. Rev. A 42, 890 (1990).Google Scholar
4. Kopelman, R., Science 241, 1620 (1988).Google Scholar
5. Doering, C. R. and ben-Avraham, D., Phys. Rev. A 38, 3035 (1988).Google Scholar
6. Argyrakis, P. and Kopelman, R., Phys. Rev. A 41, 2114 (1990); P. Argyrakis and R. Kopelman, Phys. Rev. A41, 2121.Google Scholar
7. Leyvraz, F. and Redner, S., Phys. Rev. Lett. 66, 2168 (1991); F. Leyvraz and S. Redner, Phys. Rev. Lett. 66, 2168 (1991), preprint.Google Scholar
8. Ovchinnikov, A. A. and Zeldovich, Y. B., Chem. Phys. 28, 215 (1978); D. Toussaint and F. Wilsczek, J. Chem. Phys. 78, 2642 (1983); K. Kang and S. Redner, Phys. Rev. A 32, 435 (1985).Google Scholar
9. Li, L., Ph. D. Thesis, University of Michigan, Ann Arbor, MI (1990).Google Scholar