Published online by Cambridge University Press: 10 February 2011
We present new experimental data on the properties of monodispersed glass spheresas a function of sphere diameter and gas flow in a gas fluidized bed. The data obtained by a novel non-intrusive probe of the average particle kinetic energy, or granular temperature, at thewall is used to explore and understand the well known empirical distinction between fluidized particles which exhibit a single phase state at initial fluidization (Geldart A powders) and fluidized particles that exhibit gas bubbles at initial fluidization (Geldart B powders). Specifically we show that the experimental “jump” we observe in the granular temperature atthe Geldart / transition is sufficient to account for the initial stability of the Geldart A phase on the basis of the one dimensional, first order, two wave, stability theory first introduced by Jackson in the early sixties. We present new data on the diameter dependent properties of the glass spheres during bed collapse and bed expansion, which demonstrate the distinctionbetween Geldart A and B behavior for these monodispersed glass spheres. Finally we present a simple Langevin model to account for the dependence of the granular temperature on sphere diameter and gas flow, and discuss the implications of these new experimental data for the fundamental physics of the Geldart A phase.