Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T21:19:05.819Z Has data issue: false hasContentIssue false

Discrete Gauge Fields for Graphene Membranes under Mechanical Strain

Published online by Cambridge University Press:  02 September 2013

James V. Sloan
Affiliation:
Department of Physics. University of Arkansas. Fayetteville, AR 72701, USA,
Alejandro A. Pacheco Sanjuan
Affiliation:
Departamento de Ingeniería Mecánica. Universidad del Norte. Barranquilla, Colombia,
Zhengfei Wang
Affiliation:
Department of Materials Science and Engineering. University of Utah. Salt Lake City, UT 84112, USA
Cedric M. Horvath
Affiliation:
Department of Physics. University of Arkansas. Fayetteville, AR 72701, USA,
Salvador Barraza-Lopez
Affiliation:
Department of Physics. University of Arkansas. Fayetteville, AR 72701, USA,
Get access

Abstract

Mechanical strain creates strong gauge fields in graphene, offering the possibility of controlling its electronic properties. We developed a gauge field theory on a honeycomb lattice valid beyond first-order continuum elasticity. Along the way, we resolve a recent controversy on the theory of strain engineering in graphene: there are no K-point dependent gauge fields.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 446, 60 (2007).CrossRefGoogle Scholar
Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Science 315, 490 (2007).CrossRefGoogle Scholar
Pereira, V. M.; Castro-Neto, A. H. Phys. Rev. Lett. 103, 046801 (2009).CrossRefGoogle Scholar
Guinea, F.; Katsnelson, M. I.; Geim, A. K. Nature Physics 6, 30 (2010).CrossRefGoogle Scholar
Kitt, A. L.; Pereira, V. M.; Swan, A. K.; Goldberg, B. B. Phys. Rev. B 85, 115432 (2012).CrossRefGoogle Scholar
Vozmediano, M. A. H.; Katsnelson, M. I.; Guinea, F. Phys. Rep. 496, 109 (2010).CrossRefGoogle Scholar
de Juan, F.; Sturla, M.; Vozmediano, M. Phys. Rev. Lett. 108, 227205 (2012).CrossRefGoogle Scholar
Suzuura, H.; Ando, T. Phys. Rev. B 65, 235412 (2002).CrossRefGoogle Scholar
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 457, 706 (2009).CrossRefGoogle Scholar
As of March of 2012, the highest reported magnetic field is of the order of 100 Tesla. See: http://www.magnet.fsu.edu/mediacenter/news/pressreleases/2012/100tshot.html Google Scholar
Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Castro-Neto, A. H.; Crommie, M. F. Science 329, 544 (2010).CrossRefGoogle Scholar
de Juan, F.; Cortijo, A.; Vozmediano, M. A. H. Phys. Rev. B 76, 165409 (2007).CrossRefGoogle Scholar
Choi, S.-M.; Jhi, S.-H.; Son, Y.-W. Phys. Rev. B 81, 081407 (2010).CrossRefGoogle Scholar
Sloan, J. V., Pacheco Sanjuan, A.A., Wang, Z., Horvath, C.M., and Barraza-Lopez, S., Phys. Rev. B 87, 155436 (2013).CrossRefGoogle Scholar
SBL, Pacheco-Sanjuan, A. A., Wang, Z., and Vanevic, M.. Solid State Comm. 166, 70 (2013).Google Scholar
de Juan, F., Mañes, J. L., Vozmediano, M. A. H., Phys.Rev. B 87, 165131 (2013).CrossRefGoogle Scholar
Kitt, A., Pereira, V. M., Swan, A. K., Goldberg, B. B., Phys. Rev. B 87, 159909(E) (2013).CrossRefGoogle Scholar