Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T11:44:50.408Z Has data issue: false hasContentIssue false

Dislocations and Traps in MBE Grown Lattice Mismatched p- InGaAs/GaAs Layers on GaAs Substrates

Published online by Cambridge University Press:  10 February 2011

A. Y. Du
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260.
M. F. Li
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260.
T. C. Chong
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260.
Z. Zhang
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, Beijing P.O. Box 2724, Beijing 100080, P. R. China.
Get access

Abstract

Dislocations and traps in MBE grown p-InGaAs/GaAs lattice-mismatched heterostructures are investigated by Cross-section Transmission Electron Microscopy (XTEM), Deep Level Transient Spectroscopy (DLTS) and Photo-luminescence (PL). The misfit dislocations and the threading dislocations observed by XTEM in different samples with different In mole fractions and different InGaAs layer thickness generally satisfy the Dodson-Tsao's plastic flow critical layer thickness curve. The threading dislocations in bulk layers introduce three hole trap levels HI, H2 and H5 with DLTS activation energies of 0.32 eV, 0.40 eV, 0.88 eV, respectively, and one electron trap El with DLTS activation energy of 0.54 eV. The misfit dislocations in relaxed InGaAs/GaAs interface induce a hole trap level H4 with DLTS activation energy between the range of 0.67–0.73 eV. All dislocation induced traps are nonradiative recombination centers which greatly degrade the optical property of the InGaAs/GaAs layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rosenberg, J. J., Benlamri, M., Kirchner, P. D., Woodall, J. M. and Pettit, G. D., IEEE Electron Dev. Lett. EDL–6, 491 (1985).Google Scholar
2. Ito, H. and Jun, J.S. H., Electron. Lett., 28, 655 (1992).Google Scholar
3. Fu, R. J., Hong, C. S., Chan, E. Y., Booher, D. J. and Figueroa, L., IEEE Photo. Technol. Left., 3, 308 (1991).Google Scholar
4. People, R. and Bean, J. C., Appl. Lett., 47, 322 (1985).Google Scholar
5. Dodson, B.W. and Tsao, J. Y., Appl. Phys. Lett., 51, 1325 (1987).Google Scholar
6. Gosling, T. J., Bullough, R., Jain, S. C. and Willis, J. R., J. Appl. Phys., 73, 8267 (1993).Google Scholar
7. Zou, J., Cockayne, D. J. H. and Usher, B. F., J. Appl. Phys., 73, 619 (1993).Google Scholar
8. Li, M. F. and Sah, C. T., IEEE Trans. Electron Devices, ED–29, 306(1982).Google Scholar
9. Li, M. F., modern Semiconductor Quantum Physics, (World Scientific, Singapore, 1994) chap.3.Google Scholar
10. Ashizawa, Y., Akbar, S., Schaff., W. J. Eastman, L. F. Fitzgerald, E. A. and Ast, D. G., J. Appl. Phys., 64, 4065 (1988).Google Scholar
11. Choi, Y. W., Xie, K., Kim, H. M. and Wie, C. R., J. Electron. Mater., 20, 545 (1991).Google Scholar
12. Irvine, A. C., Howard, L. K. and Palmer, D. W., Materials Science Forum, 83–8, 1291 (1992).Google Scholar
13. Buchwald, W. R., Zhao, J. H. Harmatz, M. and Poindexter, E. H., Solid-St. Electron., 36, 1077 (1993).Google Scholar
14. Uchida, Y., Kakibayashi, H. and Goto, S., J. Appl. Phys., 74, 6720 (1993).Google Scholar