Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:41:15.647Z Has data issue: false hasContentIssue false

Distinct Magnesium Incorporation Behavior in Laterally Grown AlGaN

Published online by Cambridge University Press:  11 February 2011

R. Liu
Affiliation:
Dept. Physics and Astronomy, Arizona State University, Tempe, AZ, 85287–1504
A. Bell
Affiliation:
Dept. Physics and Astronomy, Arizona State University, Tempe, AZ, 85287–1504
F. A. Ponce
Affiliation:
Dept. Physics and Astronomy, Arizona State University, Tempe, AZ, 85287–1504
D. Cherns
Affiliation:
H. H. Wills Physics Laboratory, Bristol, BS8 1TL, UK
H. Amano
Affiliation:
Dept. of Materials Science and Engineering, Meijo University, Nagoya 468, Japan
I. Akasaki
Affiliation:
Dept. of Materials Science and Engineering, Meijo University, Nagoya 468, Japan
Get access

Abstract

Different magnesium incorporation behavior has been observed in heavily Mg-doped AlGaN epitaxial layers. The films were grown by metal-organic vapor phase epitaxy involving a lateral overgrowth technique on patterned sapphire substrates. TEM observations show that direct growth on sapphire exhibits pyramidal defects, while lateral overgrowth is homogeneous and free of structural defects. The orientation of the growth front significantly influences the microstructure, and the {0001} growth facet appears to be essential for the formation of the pyramidal defects. In addition, cylindrical and funnel-shaped nanopipes have been observed at dislocations with an edge component. The relationship between Mg segregation and these defects is discussed, and formation mechanisms are proposed taking into consideration the orientation of the growth front.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
[2] Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
[3] Bell, A., Liu, R., Ponce, F. A., Amano, H., Akasaki, I., and Cherns, D., Appl. Phys. Lett. (accepted for publishing).Google Scholar
[4] Ramachandran, V., Feenstra, R. M., Sarney, W. L., Salamanca-Riba, L., Northrup, J. E., Romano, L. T., and Greve, D. W., Appl. Phys. Lett. 75, 808 (1999).Google Scholar
[5] Romano, L. T., Northrup, J. E., Ptak, A. J. and Myers, T. H., Appl. Phys. Lett. 77, 2479 (2000).Google Scholar
[6] Lilliental-Weber, Z., Benamara, M., Swider, W., Washburn, J., Grzegory, I., Porowski, S., Lambert, D. J. H., Eiting, C. J. and Dupuis, R. D., Appl. Phys. Lett. 75, 4159 (1999).Google Scholar
[7] Vennegues, P., Benaissa, M., Beaumont, B., Feltin, E., De Mierry, P., Dalmasso, S., Leroux, M., and Gibart, P., Appl. Phys. Lett. 77, 880 (2000).Google Scholar
[8] Leroux, M., Vennegues, P., Dalmasso, S., Benaissa, M., Feltin, E., De Mierry, P., Beaumont, B., Damilano, B., Grandjean, N., and Gibart, P., Phys. Stat. Sol. (a) 192, 394 (2002).Google Scholar
[9] Detchprohm, T., Yano, M., Sano, S., Nakamura, R., Mochiduki, S., Nakamura, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 40 L16 (2001).Google Scholar
[10] Cherns, D., Young, W. T., Saunders, M., Steeds, J. W., Ponce, F. A., and Nakamura, S., Phil. Mag. A 77, 273 (1998).Google Scholar
[11] Cherns, D., Wang, Y.Q., Liu, R., and Ponce, F.A., Appl. Phys. Lett. (accepted for publishing).Google Scholar