Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T04:18:34.550Z Has data issue: false hasContentIssue false

Magnetic Exchange Coupling in Asymmetric Trilayers of Co/Cr/Fe

Published online by Cambridge University Press:  15 February 2011

K. Theis-BrÖhl
Affiliation:
Ruhr-Universität Bochum, D-44780 Bochum, Germany
R. Scheidt
Affiliation:
Ruhr-Universität Bochum, D-44780 Bochum, Germany
TH. Zeidler
Affiliation:
Ruhr-Universität Bochum, D-44780 Bochum, Germany
F. Schreiber
Affiliation:
Ruhr-Universität Bochum, D-44780 Bochum, Germany
H. Zabel
Affiliation:
Ruhr-Universität Bochum, D-44780 Bochum, Germany
TH. Mathieu
Affiliation:
Universität Karlsruhe, Engesser Str.7, D-76128 Karlsruhe, Germany
CH. Mathieu
Affiliation:
Universität Karlsruhe, Engesser Str.7, D-76128 Karlsruhe, Germany
B. Hillebrands
Affiliation:
Universität Karlsruhe, Engesser Str.7, D-76128 Karlsruhe, Germany
Get access

Abstract

We present first results of anisotropy and exchange coupling studies of a system with two different magnetic layers (Fe and Co) separated by a nonmagnetic Cr spacer. For the magnetic measurements we used the longitudinal magneto-optical Kerr effect and ferromagnetic resonance. The hysteresis data obtained from the trilayer were fit to a theoretical model which contains both bilinear and biquadratic coupling. The in-plane anisotropy was found to be four-fold with the same easy-axis orientation for both the Fe and the Co layers. An analysis of the easy-axishysteresis loops indicates long period oscillatory coupling and also suggests a short period coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stiles, M.D., Phys. Rev. B48, 7738 (1993).Google Scholar
2. Hathaway, K.B. in Ultrathin Magnetic Structures II, ed. by Heinrich, B. and Bland, J.A.C..Google Scholar
3. Hasegawa, J.H., Phys. Rev. B42, 2368 (1990); Phys. Rev. B43, 10803 (1990).Google Scholar
4. Purcell, S.T., Folkerts, W., Johnson, M.T., McGee, N.W.E., Jager, K., Steege, J. Aan de, Zeper, W.P. and Grünberg, P., Phys. Rev. Lett. B42, 67, 903 (1991).Google Scholar
5. Demokritov, S., Wolf, J.A., and Grünberg, P. and Zinn, W., Mat. Res. Soc. Symp. Proc. Vol. 231,133 (1992).Google Scholar
6. Donner, W., Metoki, N., Abromeit, A. and Zabel, H., Phys. Rev. B, 48, 14745, (1993).Google Scholar
7. Müge, Th., Zeidler, Th., Wang, Q., Morawe, Ch., Metoki, N., and Zabel, H., J. Appl. Phys. 77 1055 (1995).Google Scholar
8. Schreiber, F., Frait, Z., Zeidler, Th., Metoki, N., Donner, W., Zabel, H. and Pelzl, J., Phys. Rev. B,51, 2920, (1995).Google Scholar
9. Rührig, M., Schäffer, R., Hubert, A., Mosler, R., Wolf, J.A., Demokritov, S. and Grünberg, P., Phys. Stat. Sol. (a) 125, 635 (1991).Google Scholar