Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:11:33.193Z Has data issue: false hasContentIssue false

Dual Detection Platform with Refractive Index and SERS Sensing Based on Colloidal Gold Functionalized Porous Silicon Substrates

Published online by Cambridge University Press:  01 February 2011

Yang Jiao
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, U.S.A.
Dmitry S. Koktysh
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN 37235, U.S.A. Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, U.S.A.
Sharon M. Weiss*
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, U.S.A. Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, U.S.A.
*
a)Electronic mail: sharon.weiss@vanderbilt.edu
Get access

Abstract

We demonstrate a dual-mode sensing platform based on porous silicon (PSi) substrates coated with colloidal gold (Au) nanoparticles (NPs). This Au-PSi composite structure supports both molecular fingerprinting via surface enhanced Raman scattering (SERS) and quantification of molecular binding via reflectance measurements. Reflectance shifts of 7-10 nm in the infrared region were observed in the case of adsorbing benzenethiol or antioxidant glutathione molecules on the surface of Au NPs. Subsequent SERS measurements showed unique identification for both molecules and provided a < 1 μM and < 1 mM detection resolution for benzenethiol and glutathione, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, S. Y., Motesharei, K., Dancil, K. P. S., Sailor, M. J., and Ghadiri, M. R., Science 278, 5339 (1997).Google Scholar
2. Rong, G., Najmaie, A., Sipe, J. E., and Weiss, S. M., Biosens. Bioelectron. 23, 1572 (2008).Google Scholar
3. Chan, S., Horner, S. R., Fauchet, P. M., and Miller, B. L., J. Am. Chem. Soc. 123, 511797 (2001).Google Scholar
4. Jiao, Y., and Weiss, S. M., Biosens. Bioelectron. 25, 1536 (2010).Google Scholar
5. Chan, S., Kwon, S., Koo, T.-W., Lee, L. P., and Berlin, A. A., Adv. Mater. 15, 1595 (2003).Google Scholar
6. Talian, I., Mogensen, K. B., Oriňák, A., Kaniansky, D., and Hübner, J., J. Raman Spectrosc. 40, 982 (2009).Google Scholar
7. Deneke, S. M., and Fanburg, B. L., Am. Physiol. Soc. 89, L163 (1989).Google Scholar
8. Ouyang, H., Chrisphersen, M., Viard, R., and Miller, B. L., Adv. Funct. Mater. 15, 1851 (2005).Google Scholar
9. Turkvich, J., Stevenson, P. C., and Hiller, J., J. Phys. Chem. 57, 670 (1953).Google Scholar
10. Xue, C., Millstone, J. E., Li, S. Y., and Mirkin, C. A., Angew. Chem. Int. Ed. 46, 8436 (2007).Google Scholar
11. Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., and Plech, A.. J. Phys. Chem. B. 110, 15700 (2006).Google Scholar
12. Jiao, Y., Dmitry, D. S., Phambu, N., and Weiss, S. M.. Appl. Phys. Lett. 97, 153125 (2010).Google Scholar
13. Njoki, P. N., . Lim, I. -I. S, Mott, D., Park, H. -Y., Khan, B., Mishra, S., Sujakumar, R., Luo, J., and Zhong, C. -J., J. Phys. Chem. C. 111, 1466414669 (2007).Google Scholar