Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T18:12:39.110Z Has data issue: false hasContentIssue false

Dynamics of Compressed and Stretched Liquid SiO2, and the Glass Transition

Published online by Cambridge University Press:  25 February 2011

C. A. Angell
Affiliation:
Department of Chemistry, Purdue University West Lafayette, IN 47907
P. A. Cheeseman
Affiliation:
Department of Chemistry, Purdue University West Lafayette, IN 47907
C. C. Phifer
Affiliation:
Department of Chemistry, Purdue University West Lafayette, IN 47907
Get access

Abstract

Ion dynamics simulations are presented to model the system SiO2 over wide ranges of temperature and density as it passes from liquid into glassy states. Essential features of the diffusive mechanism by means of which the system configuration space is explored are examined in relation to density and structure. The presence of a water-like density maximum in the liquid state of this system is established by using the negative pressure regime to stretch the system and thereby sharpen the phenomenon.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palmer, R. G. and Stein, D. L. in “Relaxation in Complex Systems” edited by Ngai, K. and Wright, G. B. (National Technical Information Service, U.S. Department of Commerce, Springfield, VA 1984) p 253.Google Scholar
2. Palmer, R. G., Adv. Phys. 31, 669 (1982).CrossRefGoogle Scholar
3. Schlesinger, M. F. and Bendler, J. T., Ann. N.Y. Acad. Sci., 1986 (in press).Google Scholar
4. Moynihan, C. T. et al, Ann. N.Y. Acad. Sci. 279, 15 (1976).CrossRefGoogle Scholar
5. Hodge, I. M. in “Relaxation in Complex Systems” edited by Ngai, K. and Wright, G. B. (National Technical Information Service, U.S. Department of Commerce, Springfield, VA 1984) p 65.Google Scholar
6. Scherer, G. W., J. Amer. Ceram. Soc., 61, 504 (1984).CrossRefGoogle Scholar
7. Bengtzelius, V., Götze, W. and Sjölander, A., J. Phys. C. Solid State Phys. 17, 5915, (1984): Ann. N.Y. Acad. Sci. 1986 (in press).CrossRefGoogle Scholar
8(a). Johari, G. P. and Goldstein, M., J. Chem. Phys. 53, 2372 (1970); 55 4245 (1971). (b). G. P. Johari in “Relaxation in Complex Systems” edited by K. Ngai and G. B Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, VA 1984) p 17.CrossRefGoogle Scholar
9. Woodcock, L. V., Angell, C. A. and Cheeseman, P., J. Chem. Phys., 65, 1565 (1976).CrossRefGoogle Scholar
10. Angell, C. A., Cheeseman, P.A., Woodcock, L.V. and Clarke, J.H.R. in “The Structure of Non-Crystalline Materials,” Edited by Gaskell, P. (Taylor Publishing Company, Cambridge 1977) pp. 191194.Google Scholar
11. Soules, T. F., J. Chem. Phys., 71 4570 (1979).CrossRefGoogle Scholar
12. Mitra, S. K., Amini, M., Fincham, D. and Hockney, R. W., Phil. Mag. B, 43, 365 (1981).CrossRefGoogle Scholar
13. Angell, C. A., Clarke, J.H.R. and Woodcock, L. V., Adv. Chem. Phys., 48, 397 (1981).CrossRefGoogle Scholar
14. Cheeseman, P. A., Ph.D thesis, Purdue University, 198?.Google Scholar
15(a).Douglas, R. W. and Isard, J. O., J. Soc. Glass Tech. 35, 206 (1971). (b).R. W. Bruckner, J. Non-Cryst. sol. 5, 281 (1971).Google Scholar
16(a).Brawer, S. A. and Weber, M. J., J. Non-Cryst. Sol. 38&39, 9 (1980). (b).S. A. Brawer, J. Chem. Phys. 75 3516 (1981).CrossRefGoogle Scholar
17. Brawer, S. A., J. Chem. Phys. 79, 4539 (1983).CrossRefGoogle Scholar
18. Yinnon, H. and Cooper, A. R., Phys. Chem. Glasses, 21, 204 (1980).Google Scholar
19. Soules, T. F. and Busbey, R. F., J. Chem. Phys. 75, 969 (1981).CrossRefGoogle Scholar
20. Kushiro, I., J. Geophys. Res., 81 6347 (1976).CrossRefGoogle Scholar
21. Angell, C. A., Cheeseman, P. A. and Tamaddon, S., Bull. Mineralogie 1–2, 87 (1983).CrossRefGoogle Scholar
22. Atake, T. and Angell, C. A., J. Phys. Chem., 83, 3281 (1979).CrossRefGoogle Scholar
23. Angell, C. A., J. Polymer Science, Polymer Letters, 11, 383 (1973).Google Scholar
24. Davies, R. O. and Jones, G. O., Adv. Phys., 2, 370 (1953).CrossRefGoogle Scholar
25. Landau, L. and Lifschitz, E. M., Stat. Phys. (Pergamon, London and Addison-Wesley, Reading, MA 1958), Sec, 111, p. 350.Google Scholar
26. Angell, C. A. and Kanno, H., Science, 193, 1121 (1976).CrossRefGoogle Scholar
27. Tamaddon, S. and Angell, C. A. (1984) unpublished work.Google Scholar
28. Soules, T. F., J. Non-Cryst. Sol. (Kreidl Symposium) 73, (1985)Google Scholar
29. Angell, C. A. and Phifer, C. C. and Tamaddon, S. (to be published).Google Scholar