Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T17:36:16.751Z Has data issue: false hasContentIssue false

Effect of Adding Zn in Cd1-XZnXS Thin Films Prepared by an Ammonia-Free Chemical Bath Deposition Process

Published online by Cambridge University Press:  21 May 2013

Iyali Carreón-Moncada
Affiliation:
Centro de Investigación y Estudios Avanzados del IPN, Unidad Saltillo, Avenida Industrial Metalúrgica 1062, Parque industrial, Ramos Arizpe, CP.25900, Coah. México
Luis A. González
Affiliation:
Centro de Investigación y Estudios Avanzados del IPN, Unidad Saltillo, Avenida Industrial Metalúrgica 1062, Parque industrial, Ramos Arizpe, CP.25900, Coah. México
Martin I. Pech-Canul
Affiliation:
Centro de Investigación y Estudios Avanzados del IPN, Unidad Saltillo, Avenida Industrial Metalúrgica 1062, Parque industrial, Ramos Arizpe, CP.25900, Coah. México
Rafael Ramírez-Bon
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apartado Postal 1-798, CP. 76001, Querétaro, Qro., México
Get access

Abstract

The present investigation work shows the results of Cd1-XZnXS thin films (where X= 0.04, 0.08, 0.12, 0.16 and 0.2), obtained by total ammonia-free chemical bath processes. The reaction solutions were prepared with precursors of metallic salts as CdCl2 and ZnCl2 and replacing the ammonia with trisodic citrate (C6H5O7Na3) as complexing agent. The reaction solutions were stabilized with KOH to get alkaline solutions. As result of adding Zn, the as deposited films showed changes in their morphological, structural and optical properties. Moreover, additional changes were obtained when thermal treatments to 400°C under N2 environment were applied to the as deposited films. The agglomerates at the surface of the annealed films showed larger grain sizes compared to that of the as deposited films. Due to preferential orientation of the hexagonal wurtzite-type structure in the films, changes in the intensity in the (002), (100) and (101) peaks from x-ray diffraction analysis were observed. Finally, a reduction on the maximum energy band gap from 2.65 to 2.59 eV was obtained as effect of the annealing treatment to the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hodes, G.. Chemical Solution Deposition of Semiconductor Films, 1st. ed. (Marcel Dekker,New York, 2003). p.280.Google Scholar
Ortuño, M. B.. PhD. Tesis. Centro de investigación y de Estudios Avanzados del IPN, Unidad Queretaro. 2004.Google Scholar
Khare, A. and Bhushan, S.. Cryst. Res. Technol. 4, 7 (2006).Google Scholar
Noor, N.A., Ikrama, N., Alia, S., Nazirb, S., Alay-e-Abbasc, S.M., Shaukat, A.. J. Alloys Compd. 2010, 507.Google Scholar
Bruckman, G.. Kolloid – z. 65, 1 (1933).CrossRefGoogle Scholar
Kitaev, G. A., Uritskaya, A. A., Moksushin, S. G.. Russ. J. Phys. Chem. 1965, 39.Google Scholar
Kessler, J., Wennerberg, J., Bodegard, M., Stolt, L.. Sol. Energy Mater. Sol. Cells. 2003, 75 Google Scholar
Basol, B. M., Kapur, V. K., Leidholm, C. R., Halan, A.. Conference Record of the Twenty – Fifth IEEE Photovoltaic Specialists Conference (NREL Report No. TP - 410-21091). (1996) p.p. 157162.Google Scholar
Mariappan, R., Ragavendar, M., Ponnuswamy, V.. J. Alloys Compd. 2011, 509.Google Scholar
Chavhan, S.D., Senthilarasu, S., Soo-Hyoung, L.. Appl. Surf. Sci. 2008, 254.Google Scholar
Prem Kumar, T., Saravanakumar, S., Sankaranarayanan, K., App. Surf. Sci. 2011, 257.Google Scholar
Yamaguchi, T., Yamamoto, Y., Tanaka, T., Demizu, Y., Yoshida, A.. Thin solid films. 1996, 281282.Google Scholar
Sanap, V. B., Pawar, B. H.. Journal of Optoelectronics and Biomedical Materials, 2(3), 3943 (2011).Google Scholar
Prem Kumar, T., Ramesh, P., Anaraj, B.J.. Chalcogenide lett. 8, 3 (2011).Google Scholar
Harris, D.C.. Quantitative Chemical Analysis, 6th ed. (W.H. FREEMAN AND COMPANY,New York, 2003) p. 268272.Google Scholar
Sharpe, A.G. and Housecroft, C.E.. Inorganic Chemestry, 2nd ed (Pearson Education Limited, Edinburgh, 2005), p. 229232.Google Scholar
Mitzi, David B.. Solution Processing of Inorganic Materials. (WILEY, New Jersey, 2009), p. 199.Google Scholar
Pawar, S.M., Pawar, B.S., Kim, J.H., Oh-Shim, J., Lokhande, C.D.. Current Applied Physics. 2011 Google Scholar
Ortuño-López, M.B., Sotelo-Lerma, M., Mendoza-Galván, A., Ramírez-Bon, R.. Thin Solid Films. 2004, 457.Google Scholar
Arreola-Jardon, G., González, L.A., García-Cerda, L.A., Gnade, B., Quevedo-Lopez, M.A., Ramírez-Bon, R.. Thin Solid Films, 2010, 519.Google Scholar
Simmons, J. H., Optical materials, Potter, K.S., Ed. Academic Press, USA (2000), p.p. 24 y 157Google Scholar