Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T00:06:13.100Z Has data issue: false hasContentIssue false

The effect of BCl3 pretreatment on the etching of AlN in Cl2-based plasma

Published online by Cambridge University Press:  01 February 2011

Xiaoyan Xu
Affiliation:
XIAOYAN.XU@TTU.EDUXIAOYAN.XU@TTU.EDU, TEXAS TECH UNIVERSITY, NANO TECH CENTER, Lubbock, Texas, United States
Vladimir Kuryatkov
Affiliation:
VLADIMIR.KURYATKOV@ttu.edu, TEXAS TECH UNIVERSITY, NANO TECH CENTER, Lubbock, Texas, United States
Boris Borisov
Affiliation:
b.borisov@ttu.edu, TEXAS TECH UNIVERSITY, NANO TECH CENTER, Lubbock, Texas, United States
Mahesh Pandikunta
Affiliation:
mahesh.pandikunta@ttu.edu, TEXAS TECH UNIVERSITY, NANO TECH CENTER, Lubbock, Texas, United States
Sergey A Nikishin
Affiliation:
sergey.a.nikishin@ttu.edu, TEXAS TECH UNIVERSITY, NANO TECH CENTER, Lubbock, Texas, United States
Mark Holtz
Affiliation:
MARK.HOLTZ@ttu.edu, TEXAS TECH UNIVERSITY, NANO TECH CENTER, Lubbock, Texas, United States
Get access

Abstract

The effect of BCl3 and BCl3/Ar pretreatment on Cl2/Ar and Cl2/Ar/BCl3 dry etching of AlN is investigated using inductively coupled plasma reactive ion etching. The native AlN oxide can be effectively removed by a short exposure to BCl3 or BCl3/Ar plasma. Compared to the chlorine based plasma etching, BCl3/Ar is found to have the highest etch rate for both AlN and its native oxide. Following removal of the native oxide, Cl2/Ar/BCl3 plasma etching with 15% BCl3 fraction results in a high etch rate ˜ 87 nm/min and modest increases in the surface roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhu, K., Kuryatkov, V., Borisov, B., Yun, J., Kipshidze, G., Nikishin, S. A., Temkin, H., Aurongzeb, D., and Holtz, M., J. Appl. Phys. 95, 4635 (2004).Google Scholar
2. Lee, Y. H., Kim, H. S., Yeom, J. Y., Lee, J. W., Yoo, M. C., and Kim, T. I., J. Vac. Sci. Technol. A 16, 1478 (1998).Google Scholar
3. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
4. Basak, D., Yamashita, K., Sugahara, T., Fareed, Q., Nakagawa, D., Nishino, K., and Sakai, S., Jpn. J. Appl. Phys. Part 1 38, 2646 (1999).Google Scholar
5. Kuryatkov, V., Borisov, B., Saxena, J., Nikishin, S. A., Temkin, H., Patibandla, S., Menon, L., and Holtz, M., J. Appl. Phys. 97, 073302 (2005).Google Scholar
6. Han, Y., Xue, S., Wu, T., Wu, Z., Guo, W., Luo, Y., Hao, Z., and Sun, C., J. Vac. Sci. Technol. A22, 407 (2004).Google Scholar
7. Buttari, D., Chini, A., Palacios, T., Coffie, R., Shen, L., Xing, H., Heikman, S., McCarthy, L., Chakraborty, A., Keller, S., and Mishra, U. K., Appl. Phys. Lett. 83, 4779 (2003).Google Scholar
8. Khan, F. A., Zhou, L., Kumar, V., Adesida, I., and Okojie, R., Mater. Sci. Eng. B95, 51 (2002).Google Scholar
9. Nikishin, S. A., Borisov, B. A., Chandolu, A., Kuryatkov, V. V., and Temkin, H., Appl. Phys. Lett. 85, 4355 (2004).Google Scholar
10. Dalmau, R., Collazo, R., Mita, S., and Sitar, Z., J. Electron. Mater. 36, 414 (2007).Google Scholar
11. Engelhardt, M, J. Electrochem. Soc. 203rd Meeting Syposia, F2, 396 (2003).Google Scholar
12. Xu, X., Kuryatkov, V., Bernussi, A.A., and Nikishin, S.A., Proceedings of The Minerals, Metals & Materials Society, (2009).Google Scholar
13. Zhu, K., Kuryatkov, V., Borisov, B., Kipshidze, G., Nikishin, S. A., Temkin, H., and Holtz, M., Appl. Phys. Lett. 81, 4688 (2002).Google Scholar
14. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
15. Banjo, T., Tsuchihashmi, M., hanazakmi, M., Tuda, M., and Ono, K., Jpn. J. Appl. Phys. 36, 4824 (1997).Google Scholar