Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:30:35.981Z Has data issue: false hasContentIssue false

The Effect of Cu Alloying on Al Alloy Thin Films: Microstructural Mechanisms That Enhance Electromigration Resistance

Published online by Cambridge University Press:  21 February 2011

D. R. Frear
Affiliation:
Materials and Process Sciences Center Sandia National Laboratories Albuquerque, NM 87185
J. R. Michael
Affiliation:
Materials and Process Sciences Center Sandia National Laboratories Albuquerque, NM 87185
A. D. Romig Jr
Affiliation:
Materials and Process Sciences Center Sandia National Laboratories Albuquerque, NM 87185
Get access

Abstract

The microstructural evolution of unpatterned Al-2wt.%Cu thin films has been examined to elucidate the mechanism by which copper improves electromigration resistance. After annealing at 425°C and cooling to room temperature at a rate of approximately 1°C/min., the microstructure of the Al-Cu films consisted of 1 μm aluminum grains with θ-phase Al2Cu precipitates at grain boundaries and triple points. The grain size and precipitation distribution did not change with subsequent isothermal heat treatments in the temperature range of 200° to 400°C. Al-Cu thin films annealed at 400°C, a temperature just below the Al/Al+θ solvus, exhibited microstructures in which the aluminum grain boundaries were depleted in copper except for the presence of the pre-existing large, widely dispersed AI2Cu precipitates. Al-Cu thin films annealed at 200° to 300°C were enriched with copper at the aluminum grain boundaries. The large, widely dispersed Al2Cu precipitates remained after the lower temperature anneals. From these results, it is proposed that the presence of copper in aluminum thin films improves electromigration resistance due to the precipitation of a thin film of Al2Cu, or a substoichiometric precursor, along the grain boundaries. The grain boundary phase retards grain boundary diffusion in the thin films, thereby reducing total mass transport and improving electromigration resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kwok, T., Proc. IEEE V-MIC Conf., 456 (1987).Google Scholar
2. Sanchez, J. E., Kraft, O., Arzt, E., 1st Int. Workshop on Stress Induced Phenomena in Metallizations, Ithaca, NY (1991).Google Scholar
3. Sanchez, J., Arzt, E., Mat. Res. Soc. Symp. Proc., 265, 131 (1992).Google Scholar
4. Arzt, E., Kraft, O., Sanchez, J., Bader, S., Nix, W. D. in Thin Film Stresses and Mechanical Properties III, (Mat. Res. Soc., Proc., Boston, MA, 1991).Google Scholar
5. Blech, I. A., Herring, C., Appl. Phys. Lett., 54, 2577 (1989).Google Scholar
6. E., , , Arzt, Nix, W. D., J. Mater. Res., 6,731 (1991).Google Scholar
7. Ames, I., d'Heurle, F. M., Horstman, R. E., IBM J. Res. and Devel., 14 (4) 461 (1970).Google Scholar
8. d'Heurle, F. M., Metall Trans. A, 2A, 683 (1971).Google Scholar
9. d'Heurle, F. M., Ainsle, N. G., Gangulee, A., Shine, M. C., J. of Vac. Science and Tech., 9 (1), 289(1971).Google Scholar
10. Reddy, K. V., Beniere, F., Kostopoulos, D., LeTreon, J. Y., J. Appl. Phys., 50 (4) 2782 (1979).Google Scholar
11. Walker, G. A., Goldsmith, C. C., J. Appl. Phys., 44 (6) 2452 (1973).Google Scholar
12. Engelen, P. P.J. Van, Dirks, A. G., Thin Solid Films, 193/194, 999 (1990).CrossRefGoogle Scholar
13. Rosenberg, R., J. Vac. Sci. Technol., 9, 263 (1972).Google Scholar
14. Frear, D. R., Sanchez, J. E., Romig, A. D., Morris, J. W. Jr., Metall. Trans., 21A,2449 (1990).CrossRefGoogle Scholar
15. Horowitz, S. J., Blech, I. A., Mater. Sci. Eng., 10, 169 (1972).Google Scholar
16. Lloyd, J. R., Koch, R. H., Appl. Phys. Lett., 52, 196 (1988).Google Scholar
17. Schreiber, H. -U., Thin Solid Films, 175, 29 (1989).CrossRefGoogle Scholar
18. Grabe, B., Schreiber, H. -U., Solid State Electron., 29, 893 (1986).Google Scholar
19. Lloyd, J. R., Appl. Phys. Lett., 57, 1167 (1990).Google Scholar
20. Ho, P. S., Lewis, J. E., Howard, J. K., Thin Solid Films, 25, 301 (1975).Google Scholar
21. d'Heurle, F. M., Rosenberg, R., Phys. Thin Films, 7, 257 (1973).Google Scholar
22. Schreiber, H. -U., Solid State Electron., 28, 1153 (1985).CrossRefGoogle Scholar
23. Michael, J. R., Williams, D. B., J. Microsc., 147, 289 (1987).Google Scholar
24. Michael, J. R., Williams, D. B., Klein, C. F., Ayer, R., J. Microsc., 160, 41 (1990).CrossRefGoogle Scholar
25. Goldstein, J. I., Costley, J. L., Lorimer, G. W., Reed, S. J. B., Scanning Elec. Micro., edited by Johari, O., pp. 315324 (1977).Google Scholar
26. Michael, J. R., Romig, A. D. Jr., Frear, D. R., Mat. Res. Symp. Proc., 229, 303 (1991).Google Scholar
27. Frear, D. R., Michael, J. R., Kim, C., Romig, A. D. Jr., Proc. SPIE Metallization: Performance and Reliability Issues for VLSI and ULSI, 1596, 72 (1991).Google Scholar
28. Aaron, H. B., Aaronson, H. I., Acta Met., 16, 789 (1968).Google Scholar
29. Small, M. B., Smith, D. A., Garratt-Reed, A. J., unpublished research.Google Scholar
30. Sanchez, J. E., McKnelly, L. T., Morris, J. W. Jr., J. Appl. Phys., 72, 3201 (1992).Google Scholar
31. Sanchez, J. E., Morris, J. W. Jr., Mat. Res. Symp. Proc., 225, 53 (1991).Google Scholar
32. Su, C. M., Bohn, H. G., Robrock, K.-H., Schilling, W., J. Appl. Phys., 70, 2086 (1991).Google Scholar
33. Nowick, A. S., Berry, B. S., Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY (1972).Google Scholar