Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T22:37:01.633Z Has data issue: false hasContentIssue false

Effect of Reducing Agent on the Dispersion of Pt Nanoparticles on Electrospun Nb0.1Ti0.9O2 Nanofibers

Published online by Cambridge University Press:  04 June 2013

Esmaeil Navaei Alvar
Affiliation:
Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario, Canada
Biao Zhou
Affiliation:
Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario, Canada
S. Holger Eichhorn
Affiliation:
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
Get access

Abstract

Degradation of the catalyst and catalyst support is an essential limitation of polymer electrolyte membrane (PEM) fuel cells containing commercial platinum on carbon catalysts. Catalysts based on platinum nanoparticles coated onto nanostructured TiO2 materials are presently investigated as a more stable and equally cost effective alternative. Reported here is the synthesis of two different Pt/Nb0.1Ti0.9O2 catalysts that were prepared by chemical reduction of H2PtCl6 with either sodium borohydride in ethanolic surfactant solution or ethylene glycol. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy confirmed the deposition of Pt nanoparticles on the surface of the nanofibers and revealed average sizes of 5.4 nm and 7.6 nm for reduction with ethylene glycol and sodium borohydride, respectively. The formation of smaller sized Pt nanoparticles in ethylene glycol is reasoned with the passivation of the nanoparticle surface by glycolic anions. Cyclic voltammetry measurements confirmed a higher electrochemical specific surface area (ESCA) of about 5.45 m2/gPt for the catalyst with smaller nanoparticles while the other catalyst reached only 4.96m2/gPt. Both catalysts retain about 60% of their electrochemically active surface area after 1000 voltammetric cycles in the range of 0.03 to 1.4 V vs. RHE. This relatively high value of activity retention is explained with a strong interaction between Pt nanoparticles and Nb0.1Ti0.9O2 support.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Y.-J., Walkinson, D.P., Zhang, J., Chem. Rev. 111, 7625(2011).CrossRefGoogle Scholar
Wang, X., Li, W., Chen, Z., Waje, M., Yan, Y., J. Power Sou. 158, 154 (2006).CrossRefGoogle Scholar
Huang, S-Y., Ganesan, P., Park, S., Popov, B.N., J. Am. Chem. Soc. 131, 13898 (2009).CrossRefGoogle Scholar
Park, K-W., Choi, J-H., Ahn, K-S., Sung, Y-E., J. Phys. Chem. B 108, 5989 (2004).CrossRefGoogle Scholar
Chhina, H., Campbell, S., Kesler, O., J. Power Sources 161, 893 (2006)CrossRefGoogle Scholar
Huang, S-Y., Ganesan, P., Popov, B.N., App. Catal. B. Environmental 102, 71 (2011).CrossRefGoogle Scholar
Cavaliere, S., Subianto, S., Chevallier, L., Jones, D.J., Roziere, J., Chem. Commun. 47, 6834 (2011).CrossRefGoogle Scholar
Hayden, B.E., Malevich, D.V., Pletcher, D., Electrochem. Commun.3, 390 (2001).CrossRefGoogle Scholar
Ioroi, T., Senoh, H., Yamazaki, Shin-ichi, Siroma, Z., Fujiwara, N. and Yasuda, K., J. of the Electrochemical Society 155, B321 (2008).CrossRefGoogle Scholar
Senevirathne, K., Hui, R., Campbell, S., Ye, S., Zhang, J., ElectrochimicaActa 59, 538 (2012).CrossRefGoogle Scholar
Park, K.-W., Seol, K.-S., Electrochem. Commun.9, 2256 (2007).CrossRefGoogle Scholar
Sato, Y., Akizuki, H., Kamiyama, T., Shigesato, Y., Thin Solid Films 516, 5758 (2008).CrossRefGoogle Scholar
Chen, G., Bare, S.R., Mallouk, T.E., J. of the Electrochemical Society, 149, A1092 (2002).CrossRefGoogle Scholar
Bauer, A., Lee, K., Song, C., Xie, Y., Zhang, J., Hui, R., J. Power Sources 195, 3105 (2010).CrossRefGoogle Scholar
Kongkanand, A., Vinodgopal, K., Kuwabata, S., Kamat, P.V., J. Phys. Chem. B let. 110, 16185 (2006).CrossRefGoogle Scholar
Antolini, E., Appl. Catal B: Environmental 88, 1 (2009).CrossRefGoogle Scholar
Endo, M. et al. . Nano letters 3, 723 (2003).CrossRefGoogle Scholar
Spinacé, E.V., Neto, A.O., Vasconcelos, T.R.R., Linardi, M., J. Pow. Sour. 137, 17 (2004).CrossRefGoogle Scholar
Chu, Y.-Y., Wang, Z.-B., Gu, D.-M., Yin, G.-P., J. Pow. Sour. 195, 1799 (2010).CrossRefGoogle Scholar
Zoval, J. V., Lee, J., Gorer, S., Penner, R. M., J. Phys. Chem. B102, 1166 (1998).CrossRefGoogle Scholar
Bock, C., Paquet, C., Couillard, M., Botton, G.A., MacDougall, B.R., J. Am. Chem. Soc. 126, 8028 (2004).CrossRefGoogle Scholar
Kim, P., Joo, J.B., Kim, W., Kim, J., Song, I.K., Yi, J., Journal of Power Sources 160, 987 (2006).CrossRefGoogle Scholar
Holzwarth, U., Gibson, N., Nature Nanotechnology 6, 534 (2011).CrossRefGoogle Scholar
Nart, F., Vielstich, W., Vielstich, W., Gasteiger, H.A., Lamm, A. (Eds), Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 2. Electrocatalysis, (John Wiley&Sons 2003).Google Scholar
Tekman, C., Suslu, A., Cocen, U., Mater. Latt.62, 4470 (2008).CrossRefGoogle Scholar
Furubayashi, Y. et al. . Applied Physics Letters 86, 252101 (2005).CrossRefGoogle Scholar
Lim, D.-H., Lee, W.-J., Wheldon, J., Macy, N.L., Smyrl, W.H., J. of The Electrochem. Soc. 157, B862 (2010).CrossRefGoogle Scholar
Li, Q., Wang, K., Zhang, S., Zhang, M., Yang, J., Lin, Z., Journal ofMlecular Catalysis A: Chemical 258, 83 (2006).CrossRefGoogle Scholar