Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T18:19:37.638Z Has data issue: false hasContentIssue false

The Effect of Temperature on the Efficiency of Nitride-based Multi-quantum well Light-emitting Diodes

Published online by Cambridge University Press:  31 January 2011

Oskari Heikkilä
Affiliation:
oskari.heikkila@tkk.fi, Helsinki University of Technology, BECS, Espoo, Finland
Jani Oksanen
Affiliation:
jani.oksanen@lce.hut.fi, Helsinki Univ. of Technology, po. box 2200, espoo, 02015-TKK, Finland
Jukka Tulkki
Affiliation:
jukka.tulkki@hut.fi, TKK, BECS, Espoo, Finland
Get access

Abstract

We have recently developed a self consistent light-emitting diode (LED) model that accounts for the current transport and internal heating in AlGaAs-GaAs LEDs. In this paper we extend the model to describe multi-quantum well (MQW) active regions and III-N materials, within the limits of the currently known values and temperature dependencies of the recombination parameters in these materials. The MQW description accounts for the effect of the reduced wave function overlap to the recombination. We present simulation results obtained for an InGaN MQW LED with 4 wells at selected temperatures and discuss the factors limiting the efficiency and luminescent output of LEDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pimputkar, S. Speck, J. S. DenBaars, S. P. and Nakamura, S. Nature Photonics 3, 180 (2009).Google Scholar
2 Krames, M. R. Shchekin, O. B. Mueller-Mach, R., Mueller, G. O. Zhou, L. Harbers, G. and Craford, M. G. J. Display Technol 3, 160 (2007).Google Scholar
3 Chen, G. Craven, M. Kim, A. Munkholm, A. Watanabe, S. Camras, M. Götz, W., and Steranka, F., physica status solidi (a) 205, 1086 (2008).Google Scholar
4 Kim, M.-H., Schubert, M. F. Dai, Q. Kim, J. K. Schubert, E. F. Piprek, J. and Park, Y. Appl. Phys. Lett. 91, 183507 (2007).Google Scholar
5 Bulashevich, K. A. Karpov, S. Yu., physica status solidi (c) 5, 2066 (2008).Google Scholar
6 Bulashevich, K. Mymrin, V. Karpov, S. Zhmakin, I. and Zhmakin, A. Journal of Computational Physics 213, 214 (2006).Google Scholar
7 Bogdanov, M. V. Bulashevich, K.A. I, Yu. Evstratov, Zhmakin, A.I. and Karpov, S. Yu., Semicond. Sci. Technol. 23, 125023 (2008)Google Scholar
8 Gunna, S. Bertazzi, F. Paiella, R. Bellotti, E. in Nitride Semiconductor Devices, edited by Piprek, J., pp. 117143 (Wiley-WCH, Weinheim, 2007); S. Yu. Karpov, ibid, pp. 303-325.Google Scholar
9 Wang, J.-B., Johnson, S. R. Ding, D. Yu, S.-Q., and Zhang, Y.-H., Journal of Applied Physics 100, 043502 (2006).Google Scholar
10 Levinshtein, M. E. Rumyantsev, S. L. Shur, M. S. Properties of advanced semiconductor materials, (Wiley-Interscience, New York, 2001), pp. 166.Google Scholar
11 Chen, J.-R. Ling, S.-C., Huang, H.-M., Su, P.-Y., Ko, T.-S., Lu, T.-C., Kuo, H.-C., Kuo, Y.-K. and Wang, S.-C., Applied Physics B 95, 145 (2009).Google Scholar
12 Hader, J. Moloney, J. V. Pasenow, B. Koch, S. W. Sabathil, M. Linder, N. and Lutgen, S., Appl. Phys. Lett. 92, 261103 (2008)Google Scholar
13 Ryu, H.-Y., Kim, H.-S., Shim, J.-I., Rate equation analysis of efficiency droop in InGaN lightemitting diodes, App. Phys. Lett. 95, 081114 (2009).Google Scholar