Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T23:24:44.327Z Has data issue: false hasContentIssue false

Effect of the oxidation of a silicide layer on dopant diffusion in the underlying silicon

Published online by Cambridge University Press:  10 February 2011

L. Kappius
Affiliation:
Institut füir Schicht- und lonentechnik, Forschungszentrum Jülich (e-mail: l.kappius@fz-juelich.de)
A. K. Tyagi
Affiliation:
Zentralabteilung fOr Chemische Analysen, Forschungszentrum Jülich, D-52425 Jülich, Germany
U. Breuer
Affiliation:
Zentralabteilung fOr Chemische Analysen, Forschungszentrum Jülich, D-52425 Jülich, Germany
H. L. Bay
Affiliation:
Institut füir Schicht- und lonentechnik, ForschungszentrumJülich
S. Manti
Affiliation:
Institut füir Schicht- und lonentechnik, ForschungszentrumJülich
Get access

Abstract

We have studied the influence of an epitaxial silicide layer on the diffusion of B and Sb in silicon. B and Sb doping superlattices have been grown by molecular beam epitaxy. They were then covered with a 20 nm thick CoSi2 layer. Test samples were also grown without silicide. Samples were oxidized at various temperatures ranging from 800°C to 1200°C for times that ensured sufficient broadening of the spikes. Another set of samples was annealed at the same times and temperatures in N2. Dopant depth profiles were measured before and after diffusion by secondary ion mass spectrometry (SIMS). At the test samples we observed thermal diffusion of B and Sb, oxidation enhanced diffusion of B and oxidation retarded diffusion of Sb, all in accordance with the literature. In contrast to this, oxidized silicide capped samples showed a retardation of B diffusion by a factor of 2 - 10 as compared to thermal diffusivity and an enhancement of Sb diffusion by a factor of 1 - 2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mantl, S., Dolle, M., Mesters, St., Fichtner, P. F. P. and Bay, H. L., Appl. Phys. Lett. 67, 3459 (1995)Google Scholar
2. Gossmann, H.-J., Rafferty, C. S., Luftman, H.S., Unterwald, F. C., Boone, T. and Poate, J. M., Appl. phys. Lett. 63, 639 (1993)Google Scholar
3. Tan, T. Y. and Gosele, U., Appl. Phys. A 37, 1 (1985)Google Scholar
4. Herner, S. B. Jones, K.S., Gossmann, H.-J., Poate, J. M. and Luftman, H. S., Appl. Phys. Lett. 68, 1686 (1996)Google Scholar
5. Herner, S. B., Gossmann, H.-J. and Tung, R. T., Appl. Phys. Lett. 72, 2289 (1998)Google Scholar
6. Klinkhammer, F., Dolle, M., Kappius, L., Mantl, S., Microelectronic Engineering 37/38, 515521 (1997)Google Scholar
7. and, R. Tung Ohmi, S. to be published in proceedings of the MRS Vol. 514, (1998)Google Scholar
8. Gossmann, H.-J., Unterwald, F. C. and Luftman, H. S., J. Appl.Phys. 73, 8237 (1993)Google Scholar
9. Mantl, S. and Bay, H. L., J. Phys. D: Appl. Phys. Lett. 61, 267 (1992)Google Scholar
10. Tyagi, A.K., Macht, M.-P. and Naundorf, V., Acta Metall. Mater. 39, 609, 1991 Google Scholar
11. Fair, R.B., (Ed. Wang, F.F.Y.). “Impurity Doping Process in Silicon”, North Holland, Amsterdam, 1981 Google Scholar