Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T23:26:14.908Z Has data issue: false hasContentIssue false

The Effects of High and Low Dose Hydrogen Ion Implantations on Al/n-Si Schottky Diodes

Published online by Cambridge University Press:  26 February 2011

A. S. Yapsir
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, N. Y. 12180
P. Hadizad
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, N. Y. 12180
T. -M. Lu
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, N. Y. 12180
J. C. Corelli
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, N. Y. 12180
J. W. Corbett
Affiliation:
Physics Department, State University of New York, Albany, N. Y. 1222
W. A. Lanford
Affiliation:
Physics Department, State University of New York, Albany, N. Y. 1222
H. Bakhru
Affiliation:
Physics Department, State University of New York, Albany, N. Y. 1222
Get access

Abstract

Hydrogen ion implantation was performed on Al/n-Si Schottky diodes at doses ranging from 1014 H cm2 to 1016 H cm−2. The effects of ion bombardment and subsequent heat treatments on the diodes were studied using the current-voltage, capacitance-voltage and deep level transient spectroscopy techniques. To explore the stability of hydrogen in silicon, the 1H(15N,aγ)12C nuclear resonance reaction was used. The different effects observed in the low and high dose implantation will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pankove, J. I., Wance, R. O., and Berkeyheiser, J. E., Appl. Phys. Lett. 45, 1100(1984).Google Scholar
2.Johnson, N. M., Phys. Rev. B. 31, 5525(1985).Google Scholar
3.Sah, C. -T., Sun, J. C. -C., and Tzou, J. J. -T., Appl. Phys. Lett. 43, 204(1983).Google Scholar
4.Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769(1986).Google Scholar
5.Benton, J. L., Doherty, C. J., Ferris, S. D., Flamm, D. L., Kimerling, L. C., and Leamy, H. J., Appl. Phys. Lett. 36, 670(1980).Google Scholar
6.Pankove, J. I., Lampert, M. A., and Tarng, M. L., Appl. Phys. Lett. 32, 439(1978).Google Scholar
7.Yapsir, A. S., Hadizad, P., Lu, T. -M., Corelli, J. C., Lanford, W. A., and Bakhru, H., Appl. Phys. Lett. 50, 1530(1987).Google Scholar
8.Yapsir, A. S., Hadizad, P., Lu, T. -M., Corelli, J. C., Corbett, J. W., Lanford, W. A., and Bakhru, H., Phys. Rev. B.(to be published).Google Scholar
9.Lang, D. V., J. Appl. Phys. 45, 3023(1974).Google Scholar
10.Lanford, W. A., Trautvetter, H. P., Ziegler, J. F., and Keller, J., Appl. Phys. Lett. 28, 566(1976).Google Scholar
11.Shi, T. S., Sahu, S. N., Oehrlein, G. S., Hiraki, A., Corbett, J. W., Phys. Stat. Solidi. A., 74, 329(1982).Google Scholar