Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T14:07:07.260Z Has data issue: false hasContentIssue false

Effects of Hydrogen on the Deep Levels in Si, ZnO and Diamond Studied by Cathodoluminescence

Published online by Cambridge University Press:  01 February 2011

Takashi Sekiguchi*
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, Tsukuba 305-0047, JAPAN
Get access

Abstract

The effects of hydrogen on the deep level luminescence in Si, ZnO and diamond were studied by means of cathodoluminescence. It is well known that most of the deep levels in Si are passivated by hydrogen. Scratch lines on Si surface, which do not show any characteristic luminescence, obtain so-called D-line luminescence by hydrogen plasma treatment. It indicates that only nonradiative defects are passivated but D-line luminescence is not passivated by hydrogenation. Contrarily, typical ZnO crystal shows the green emission, which is attributed to the point defects or impurities. Hydrogen completely passivates this green emission, and in turn, enhances the band edge emission. The effect of hydrogen passivation disappeared by the annealing at temperatures higher than 600 °C. Hydrogen behaves more peculiarly in diamond. The hydrogenated diamond film shows the characteristic emission around 2.3 eV in photon energy. Since it disappears by oxidization treatment, this emission is attributed to hydrogen at the subsurface region. The detailed study indicated that hydrogen in diamond has bistable states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pankove, J.I. and Jhonson, N.M., Hydrogen in Semiconductors (Semiconductors and Semimetals vol. 34, Academic Press, San Diego, 1991)Google Scholar
2 Drozdov, N.A., Patrin, A.A. and Tkachev, V.D., Pis'ma Zh. Eksp. Teor. Fiz. 23, 651 (1976) [JETP Lett. 23, 597 (1976)].Google Scholar
3 Drozdov, N.A., Patrin, A.A. and Tkachev, V.D., Phys. Status Solidi.B 83, K137 (1977).Google Scholar
4 Suezawa, M., Sasaki, Y. and Sumino, K., Phys. Status Solidi.A 79, 173 (1983)Google Scholar
5 Suezawa, M. and Sumino, K.; Phys. Status Solidi.A 78, 639 (1983)Google Scholar
6 Sauer, R., Weber, J., Stolz, J., Weber, E.R., Kusters, K.-H. and Alexander, H., Appl. Phys.A 36, 1 (1985)Google Scholar
7 Lerikov, Yu., Rebane, Yu., Ruvimov, S., Tarhin, D., Sitnikova, A. and Shreter, Yu., Materials Science Forum 83-87, 1321 (1992)Google Scholar
8 Higgs, V., Lightowlers, E.C., Norman, C.E. and Kightley, P.C. Materials Science Forum 83-87, 1309 (1992)Google Scholar
9 Sekiguchi, T., Kveder, V.V. and Sumino, K., J. Appl. Phys. 76, 7882 (1994)Google Scholar
10 Reynolds, D. C., Look, D. C., and Jogai, B., Solid State Commun. 99, 869 (1996)Google Scholar
11 Zu, P., Tang, Z.K., Wong, Z.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Solid State Commun. 103, 459 (1996)Google Scholar
12 Bagnall, D.M., Chen, Y.F., Shen, M.Y., Zhu, Z., Goto, T., and Yao, T., J. Cryst Growth 184/185, 605 (1998)Google Scholar
13 Landstrass, M.I. and Ravi, K.V., Appl. Phys. Lett. 55, 1391 (1989)Google Scholar
14 Maki, T., Shikama, S., Komori, M., Sakaguchi, Y., Sakuta, K., and Kobayashi, T., Jpn. J. Appl. Phys. 31, L1446 (1992).Google Scholar
15 Mori, Y., Hatta, A., Ito, T., and Hiraki, A., Jpn. J. Appl. Phys. 31, L1718 (1992).Google Scholar
16 Kiyota, H., Matsushima, E., Sato, K., Okushi, H., Ando, T., Kamo, M., Sato, Y., Iida, M., Appl. Phys. Lett. 67, 3596 (1995)Google Scholar
17 Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., Appl. Phys. Lett. 68, 376 (1996)Google Scholar
18 Hayashi, K., Watanabe, H., Yamanaka, S., Okushi, H., Kajimura, K., and Sekiguchi, T., Appl. Phys. Lett. 69, 1122 (1996)Google Scholar
19 Sekiguchi, T., Ohashi, N. and Terada, Y., Jpn. J. Appl. Phys. 36, L289 (1997).Google Scholar
20 Sekiguchi, T. and Sumino, K., Rev. Sci. Instrum. 66, 4277 (1995)Google Scholar
21 Sekiguchi, T. and Sumino, K., J. Appl. Phys. 79, 3253 (1996)Google Scholar
22 Nielsen, J.W. and Dearborn, E.F., J. Am. Ceram. Soc. 64, 1762 (1960)Google Scholar
23 Hayashi, K., Yamanaka, S., Okushi, H., and Kajimura, K., Appl. Phys. Lett. 68, 1220 (1996)Google Scholar
24 Hayashi, K., Yamanaka, S., Watanabe, H., Sekiguchi, T., Okushi, H., and Kajimura, K., J. Appl. Phys., 81, 744 (1997)Google Scholar
25 Gippius, A.A., Vavlov, V.S., Zaitzev, A.M., and Zhakupbekov, B.S., Physica B 116, 187 (1983)Google Scholar
26 Holzshuh, E., Kundig, W., Meier, P.F., Patterson, B.D., Sellschop, J.P.F., Stemmet, M.C., and Appel, H., Phys. Rev. A 25, 1272 (1982)Google Scholar